0
Defining Joint Quality Using Weld Attributes

Excerpt

Manufacturing of lithium-ion battery packs for electric or hybrid electric vehicles requires a significant amount of joining, such as welding, to meet the desired power and capacity needs. However, conventional fusion welding processes such as resistance spot welding and laser welding face difficulties in joining multiple sheets of highly conductive, dissimilar materials to create large weld areas. Ultrasonic metal welding overcomes these difficulties by using its inherent advantages derived from its solid-state process characteristics. Although ultrasonic metal welding is well-qualified for battery manufacturing, there is a lack of scientific quality guidelines for implementing ultrasonic welding in volume production. In order to establish such quality guidelines, this chapter first identifies a number of critical weld attributes that determine the quality of welds by experimentally characterizing the weld formation over time using copper-to-copper welding as an example. Samples of different weld quality were cross-sectioned and characterized with optical microscopy, scanning electronic microscopy, and hardness measurements in order to identify the relationship between physical weld attributes and weld performance. A novel microstructural classification method for the weld region of an ultrasonic metal weld is introduced to complete the weld quality characterization. The methodology provided in this chapter links process parameters to weld performance through physical weld attributes.

2.1Introduction
2.2Materials and Experiments
2.3Definition of Attributes and Weld Characterization
2.4Correlation Between Weld Attributes and Quality
2.5Conclusions
References

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In