Experimental and Numerical Investigation of Vortex Dynamics in Ventilated Cavitating Flows Around a Bluff Body


The objective of this paper is to investigate ventilated cavitating vortex shedding dynamics around a bluff body at Re=6.7×104 by experimental and numerical methods. The couple level-set and VOF (CLSVOF) method is applied to capture the air-water interface. The results show that the CLSVOF method can predict the air-water interface accurately. Two types of unsteady ventilated cavitating flows are investigated, namely vortex shedding structure (Qv=0.174) and the Re-entrant jet (Qv=0.31). The finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structures (LCS) methods are applied to investigate the formation, evolution and shedding of ventilated cavitating vortices. For vortex shedding structure (Qv=0.174), the vortices alternately shed from the cavity, forming the vortex street. For the re-entrant jet structures (Qv=0.31), there exist the interaction between the vortex shedding and the re-entrant jet. The evolution of ventilated cavitation is divided into three stages: the vortex shedding, the development of re-entrant jet and the development of ventilated cavitation.

Experimental Setup
Numerical Model
Results and Discussion
Full text of this content:

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In