0
Investigation of the Energy Shielding of Kidney Stones by Cavitation Bubble Clouds during Burst Wave Lithotripsy

Excerpt

We conduct experiments and numerical simulations of the dynamics of bubble clouds nucleated on the surface of an epoxy cylindrical stone model during burst wave lithotripsy (BWL). In the experiment, the bubble clouds are visualized and bubble-scattered acoustics are measured. In the numerical simulation, we combine methods for modeling compressible multicomponent flows to capture complex interactions among cavitation bubbles, the stone, and the burst wave. Quantitative agreement is confirmed between results of the experiment and the simulation. We observe and quantify a significant shielding of incident wave energy by the bubble clouds. The magnitude of shielding reaches up to 80% of the total acoustic energy of the incoming burst wave, suggesting a potential loss of efficacy of stone comminution. We further discovered a strong linear correlation between the magnitude of the energy shielding and the amplitude of the bubble-scattered acoustics, independent of the initial size and the void fraction of bubble cloud within a range addressed in the simulation. This correlation could provide for real-time monitoring of cavitation activity in BWL.

Introduction
Experimental and Numerical Setups
Results and Discussion
Conclusion
Acknowledgement
References
Full text of this content:

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In