Dynamic Control Strategy of a Biped Inspired from Human Walking


In this paper, we show that a biped robot can walk dynamically using a simple control technique inspired from human locomotion. We introduce four critical angles that affect robot speed and step length. Our control approach consists in tuning the PID parameters of each joint in each walking phase for introducing active compliance and then to increase stability of the walk. This method could be easily implemented in real time because it needs acceptable calculation time. We validated the control approach to a dynamic simulation of our 14DOF biped called ROBIAN. A comparison with human walking is presented and discussed. We prove that we can maintain robot stability and walk cycle's repetition without referencing a predefined trajectory or detecting the center of pressure. Results show that the walk of the biped is very similar to human one. A power consumption analysis confirms that our approach could be implemented on the real robot ROBIAN.

  • Abstract
  • Introduction
  • Control Method Description
  • Results
  • Discussion and conclusion
  • References

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In