0
Chapter 9
Thermal Stress in a Pipe

Excerpt

Thermal stresses generated by temperature variations in the wall of a pipe have been studied extensively in Reference by Timoshenko, S. and J. N. Goodier [17]. The stress, strain, radial displacement relationships in cylindrical coordinates are treated in detail in Reference [17]. To calculate the thermal stresses in a pipe wall, the temperature distribution in the pipe wall has to be known. The temperature distribution in the radial direction, R, can be obtained from a steady-state, one-dimensional heat conduction equation in cylindrical coordinates. By assuming constant thermophysical properties and no heat sources in the pipe wall, the heat conduction equation for the temperature distribution, T, is:

d2TdR2+(1R)dTdR=0

If the temperatures at the inner surface, Ti, and the outer surface, To, of the pipe wall are known, Eq. (9-1) can be solved by using the following boundary conditions:

T=TiatR=Ri

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In