In this paper, we characterize the orthogonal complement-based divide-and-conquer (ODCA) [1] algorithm in terms of the constraint violation error growth rate and singularity handling capabilities. In addition, we present a new constraint stabilization method for the ODCA architecture. The proposed stabilization method is applicable to general multibody systems with arbitrary number of closed kinematic loops. We compare the performance of the ODCA with augmented [2] and reduction [3] methods. The results indicate that the performance of the ODCA falls between these two traditional techniques. Furthermore, using a numerical example, we demonstrate the effectiveness of the new stabilization scheme.

This content is only available via PDF.
You do not currently have access to this content.