Inkjet 3D printing has broad applications in areas such as health and energy due to its capability to precisely deposit micro-droplets of multi-functional materials. However, the droplet of the inkjet printing has different jetting behaviors including drop initiation, thinning, necking, pinching and flying, and they are vulnerable to disturbance from vibration, material inhomogeneity, etc. Such issues make it challenging to yield a consistent printing process and a defect-free final product with desired properties. Therefore, timely recognition of the droplet behavior is critical for inkjet printing quality assessment. In-situ video monitoring of the printing process paves a way for such recognition. In this paper, a novel feature identification framework is presented to recognize the spatiotemporal feature of in-situ monitoring videos for inkjet printing. Specifically, a spatiotemporal fusion network is used for droplet printing behavior classification. The categories are based on inkjet printability, which is related to both the static features (ligament, satellite, and meniscus) and dynamic features (ligament thinning, droplet pinch off, meniscus oscillation). For the recorded droplet jetting video data, two streams of networks, the frames sampled from video in spatial domain (associated with static features) and the optical flow in temporal domain (associated with dynamic features), are fused in different ways to recognize the droplet evolving behavior. Experiments results show that the proposed fusion network can recognize the droplet jetting behavior in the complex printing process and identify its printability with learned knowledge, which can ultimately enable the real-time inkjet printing quality control and further provide guidance to design optimal parameter settings for the inkjet printing process.

This content is only available via PDF.
You do not currently have access to this content.