In situations where the calculation of ocean wave propagation and impact on offshore structures is required, fast numerical solvers are desired in order to find relevant wave events in a first step. After the identification of the relevant events, Computational Fluid Dynamics (CFD) based Numerical Wave Tanks (NWT) with an interface capturing two-phase flow approach can be used to resolve the complex wave structure interaction, including breaking wave kinematics. CFD models emphasize detail of the hydrodynamic physics, which makes them not the ideal candidate for the event identification due to the large computational resources involved. In the current paper a new numerical wave model is represented that solves the Laplace equation for the flow potential and the nonlinear kinematic and dynamics free surface boundary conditions. This approach requires reduced computational resources compared to CFD based NWTs. In contrast to existing approaches, the resulting fully nonlinear potential flow solver REEF3D::FNPF uses a σ-coordinate grid for the computations. Solid boundaries are incorporated through a ghost cell immersed boundary method. The free surface boundary conditions are discretized using fifth-order WENO finite difference methods and the third-order TVD Runge-Kutta scheme for time stepping. The Laplace equation for the potential is solved with Hypres stabilized bi-conjugated gradient solver preconditioned with geometric multi-grid. REEF3D::FNPF is fully parallelized following the domain decomposition strategy and the MPI communication protocol. The model is successfully tested for wave propagation benchmark cases for shallow water conditions with variable bottom as well as deep water.

This content is only available via PDF.
You do not currently have access to this content.