The optimal design of elastic-perfectly plastic truss structures subjected to quasi-statically loads variable within a given load domain is studied. The actions are given as the combination of fixed load and perfect cyclic load. Suitably chosen load multipliers are given. A minimum volume formulation of the design problem with assigned limit load multiplier is developed and it is provided on the grounds of a statical approach as well as of a kinematical approach. The incremental collapse (ratchetting) of the optimal structure is prevented, as long as the loads are not greater than some prescribed values, by special constraints suitably introduced in the search problem. The Kuhn-Tucker equations related to the above-described search problems are deduced and studied. The duality between the statical and the kinematical problem formulations is proved. A special iterative technique devoted to the solution of the above referred optimization problems is utilized for computational purposes. A numerical example concludes the paper. The comparison between different designs is effected.

1.
Polizzotto, C., Borino, G., and Fuschi, P., 1990, “On the Steady-State Response of Elastic Perfectly Plastic Solids to Cyclic Loads,” Inelastic Solids and Structures, M. Kleiber and J. A. Ko¨nig, eds., Pineridge Press, Swansea, UK, pp. 473–488.
2.
Polizzotto, C., Borino, G., and Fuschi, P., 2001, “Assessment of the Elastic/Plastic Shakedown Load Boundary for Structures Subjected to Cyclic Loading,” XV Congresso Nazionale AIMETA, Taormina, Italy.
3.
Ponter
,
A. R. S.
, and
Haofeng
,
C.
,
2001
, “
A Minimum Theorem for Cyclic Load in Excess of Shakedown, With Application to the Evaluation of a Ratchet Limit
,”
Eur. J. Mech. A/Solids
,
20
, pp.
539
553
.
4.
Polizzotto
,
C.
,
1993
, “
A Study on Plastic Shakedown of Structures: Part I—Basic Properties
,”
ASME J. Appl. Mech.
,
60
, pp.
318
323
.
5.
Zarka, J., and Casier, J., 1979, “Elastic-Plastic Response of Structure to Cyclic Loading: Practical Rules,” Mechanics Today, S. Nemat Nasser, ed., Pergamon Press, Oxford, pp. 93–198.
6.
Zarka, J., and Casier, J., 1985, “Simplified Analysis of Inelastic Structures,” Simplified Analysis of Inelastic Structures subjected to Statical or Dynamical Loadings, CISM Seminar, Oct. 7–10.
7.
Zarka, J., Frelat, J., Inglebert, G., and Kasnat-Navidi, P., 1990, A New Approach in Inelastic Analysis of Structures, Ecole Polytechnique Palaisau, France.
8.
Banichuk
,
N. V.
,
1975
, “
Optimization of Elastic Bars in Torsion
,”
Int. J. Solids Struct.
,
12
, pp.
275
286
.
9.
Cinquini
,
C.
,
Guerlement
,
G.
, and
Lamblin
,
D.
,
1980
, “
Finite Element Iterative Methods for Optimal Elastic Design of Circular Plates
,”
Comput. Struct.
,
12
(
1
), pp.
85
92
.
10.
Cinquini, C., and Sacchi, G., 1981, “A Note on the Optimal Elastic Design for Given Deflection,” Optimization of Distributed Parameter Structures, E. J. Hang, and J. Ca, eds, 1, pp. 383–398.
11.
Cohn
,
M. Z.
, and
Parimi
,
S. R.
,
1973
, “
Optimal Design of Plastic Structures for Fixed and Shakedown Loadings
,”
ASME J. Appl. Mech.
,
40
, pp.
595
599
.
12.
Ko¨nig, J. A., 1975, “On Optimum Shakedown Design,” Optimization in Structure Design, Edit by A. Sawczuk and Z. Mroz, eds., Springer-Verlag, Berlin, pp. 405–414.
13.
Giambanco
,
F.
,
Palizzolo
,
L.
, and
Polizzotto
,
C.
,
1994
, “
Optimal Shakedown Design of Beam Structures
,”
Struct. Optim.
,
8
, pp.
156
167
.
14.
Giambanco
,
F.
, and
Palizzolo
,
L.
,
1995
, “
Optimality Conditions for Shakedown Design of Trusses
,”
Comput. Mech.
,
16
(
6
), pp.
369
378
.
15.
Giambanco
,
F.
,
Palizzolo
,
L.
, and
Cirone
,
L.
,
1998
, “
Computational Methods for Optimal Shakedown Design of FE Structures
,”
Struct. Optim.
,
15
, pp.
284
295
.
16.
Tin-Loi
,
F.
,
2000
, “
Optimal Shakedown Design Under Residual Displacement Constraints
,”
Struct. Multidisc. Optim.
,
19
, pp.
130
139
.
17.
Massonet, C. E., and Save, M., 1965, Plastic Analysis and Design, Blaisdell, New York.
18.
Gallagher, R. H., and Zienkiewicz, O. C., 1973, Optimum Structural Design, John Wiley and Sons, London.
19.
Majid, K. I., 1974, Optimum Design of Structures, Newnes-Butterworths, London.
20.
Rozvany, G. I. N., 1976, Optimal Design of Flexural Systems, Pergamon, Oxford.
21.
Save, M., and Prager, W., 1985, Structural Optimization, Plenum, New York.
22.
Rozvany, G. I. N., 1989, Structural Design via Optimality Criteria, Kluwer, Dordrecht, The Netherlands.
23.
Cirone, L., Giambanco, F., and Palizzolo, L., 1999, “Multicriteria Optimal Design of Frames,” Proceedings of ASEM ’99, Seoul, Korea.
24.
Cirone, L., Giambanco, F., and Palizzolo, L., 1999, “Multicriteria Optimal Design of Trusses,” Proceedings of APCOM ’99, Singapore.
25.
Giambanco, F., 2000, “Multicriteria Optimal Design of Circular Plates,” Proceedings of IASS–IACM 2000, Fourth International Colloquium on Computation of Shell & Spatial Structures, Chania, Crete.
26.
Palizzolo, L., 2000, “Multicriteria Optimal Design of Continuous Beams,” Proceedings of ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona.
27.
Giambanco, F., 2000, “Non-Ratchet Design of FE Structures,” Proceedings of ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona.
28.
Palizzolo, L., 2000, “Non-Ratchet Design of Beam Structures,” Proceedings of IASS–IACM 2000, Fourth International Colloquium on Computation of Shell & Spatial Structures, Chania, Crete.
29.
Caffarelli, A., Giambanco, F., and Palizzolo, L., 2001, “Progetto ottimale a collasso incrementale impedito di strutture elastoplastiche,” X Convegno Nazionale ANIDIS, L’Ingegneria Sismica in Italia, Potenza, Italy.
30.
Maier
,
G.
,
1968
, “
A Quadratic Programming Approach for Certain Classes of Nonlinear Structural Problems
,”
Meccanica
,
3
, pp.
121
130
.
You do not currently have access to this content.