Abstract

Due to the low in-plane strength of C/SiC ceramic matrix composite (CMC), arm failure may occur in the classical double cantilever beam (DCB) test for determination of the mode I interlaminar fracture toughness. A taped DCB (TDCB) is designed to avoid this undesired failure mode. Exact and explicit J integral for the TDCB is derived and applied to measure the interlaminar fracture toughness of CMC. The present TDCB and J integral are demonstrated to be simple and reliable for determination of the interlaminar fracture toughness, without visual measurement of the delamination length and complex data reduction.

References

1.
Kumar
,
R. S.
,
2017
, “
Crack-Growth Resistance Behavior of Mode-I Delamination in Ceramic Matrix Composites
,”
Acta Mater.
,
131
(
1
), pp.
511
522
.
2.
Choi
,
S. R.
, and
Kowalik
,
R. W.
,
2008
, “
Interlaminar Crack Growth Resistances of Various Ceramic Matrix Composites in Mode I and Mode II Loading
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031301
.
3.
Abdi
,
F.
,
Baid
,
H.
,
Ahmad
,
J.
,
Gonczy
,
S.
,
Morscher
,
G. N.
,
Choi
,
S.
, and
Godines
,
C.
,
2015
, “
Ceramic Matrix Composite Interlaminar Fracture Toughness (Mode I-II) Characterization
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Canada
,
June 15–19
, pp.
1
9
.
4.
Mansour
,
R.
, and
Morscher
,
G. N.
,
2019
, “
Mode I Interlaminar Fracture Behavior of 2D Woven Ceramic Matrix Composites
,”
Int. J. Appl. Ceram. Technol.
,
16
(
2
), pp.
735
745
.
5.
Kakisawa
,
H.
, and
Nishimura
,
T.
,
2018
, “
A Method for Testing the Interface Toughness of Ceramic Environmental Barrier Coatings (EBCs) on Ceramic Matrix Composites (CMCs)
,”
J. Eur. Ceram. Soc.
,
38
(
2
), pp.
655
663
.
6.
Mansour
,
R.
,
Maillet
,
E.
, and
Morscher
,
G. N.
,
2015
, “
Monitoring Interlaminar Crack Growth in Ceramic Matrix Composites Using Electrical Resistance
,”
Scr. Mater.
,
98
(
1
), pp.
9
12
.
7.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
8.
Gunderson
,
J. D.
,
Brueck
,
J. F.
, and
Paris
,
A. J.
,
2007
, “
Alternative Test Method for Interlaminar Fracture Toughness of Composites
,”
Int. J. Fract.
,
143
(
3
), pp.
273
276
.
9.
Xu
,
W.
, and
Ding
,
J. C.
,
2020
, “
Correction of the Large Displacement Effect on Determination of Mode I Interlaminar Fracture Toughness of Composite
,”
Eng. Fract. Mech.
,
238
(
1
), p.
107279
.
10.
Ding
,
J. C.
, and
Xu
,
W.
,
2021
, “
Determination of Mode I Interlaminar Fracture Toughness of Composites by a Wedge-Insert Double Cantilever Beam and the Nonlinear J-Integral
,”
Compos. Sci. Technol.
,
206
(
1
), p.
108674
.
11.
Sadeghi
,
M. Z.
,
Zimmermann
,
J.
,
Gabener
,
A.
, and
Schroeder
,
K. U.
,
2018
, “
The Applicability of J-Integral Approach in the Determination of Mixed-Mode Fracture Energy in a Ductile Adhesive
,”
Int. J. Adhes. Adhes.
,
83
(
1
), pp.
2
8
.
12.
Sørensen
,
B. F.
, and
Jacobsen
,
T. K.
,
1998
, “
Large-Scale Bridging in Composites: R-Curves and Bridging Laws
,”
Composites, Part A
,
29
(
11
), pp.
1443
1451
.
You do not currently have access to this content.