Abstract

Entropic pressure, a longstanding topic of interest in biophysics and biomechanics, has been studied for over four decades. Similar to an ideal gas, fluctuating surfaces can generate entropic pressure through thermally driven motions. These thermal fluctuations impact a wide range of biological activities, including but not limited to vesicle fusion, cell adhesion, exocytocis, and endocytocis among many others. It has been proposed (and validated) by many researchers that the entropic pressure near a fluctuating confined fluid membrane without surface tension scales as p1/d3, where d is the confining distance, and this power law is size independent. In this article, we show that entropic pressure near a fluctuating fluid membrane could be strongly affected by the membrane’s size and surface tension. We show that while for membranes of size L=1μm and larger, the pressure is size independent, for smaller membranes, the pressure does indeed depend on the membrane’s size. Our findings also shows that the surface tension changes this scaling law and at larger distance makes the pressure decay exponentially. Our work provides insights into how surface tension enhances biological vesicles fusion by suppressing membrane fluctuations, and consequently, the repulsive entropic force, and impacts biomembranes interactions with external objects at the early stage of approaching.

References

1.
Helfrich
,
W.
,
1978
, “
Steric Interaction of Fluid Membranes in Multilayer Systems
,”
Z. Naturforsch. A
,
33
(
3
), pp.
305
315
.
2.
Bachmann
,
M.
,
Kleinert
,
H.
, and
Pelster
,
A.
,
2001
, “
Fluctuation Pressure of a Stack of Membranes
,”
Phys. Rev. E
,
63
(
5
), p.
051709
.
3.
Kleinert
,
H.
,
1999
, “
Fluctuation Pressure of Membrane Between Walls
,”
Phys. Lett. A
,
257
(
1–5
), pp.
269
274
.
4.
Freund
,
L.
,
2013
, “
Entropic Pressure Between Biomembranes in a Periodic Stack Due to Thermal Fluctuations
,”
Proc. Natl. Acad. Sci. USA
,
110
(
6
), pp.
2047
2051
.
5.
Sharma
,
P.
,
2013
, “
Entropic Force Between Membranes Reexamined
,”
Proc. Natl. Acad. Sci. USA
,
110
(
6
), pp.
1976
1977
.
6.
Hanlumyuang
,
Y.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Revisiting the Entropic Force Between Fluctuating Biological Membranes
,”
J. Mech. Phys. Solids
,
63
, pp.
179
186
.
7.
Liang
,
X.
, and
Purohit
,
P. K.
,
2018
, “
A Method to Compute Elastic and Entropic Interactions of Membrane Inclusions
,”
Extreme Mech. Lett.
,
18
, pp.
29
35
.
8.
Mozaffari
,
K.
,
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2021
, “
Flexoelectricity and the Entropic Force Between Fluctuating Fluid Membranes
,”
Math. Mech. Solids
,
26
(
12
), pp.
1760
1778
.
9.
Hassan
,
R.
,
Garzon
,
M. A.
,
Gao
,
W.
, and
Ahmadpoor
,
F.
,
2024
, “
Entropic Pressure on Fluctuating Solid Membranes
,”
J. Mech. Phys. Solids
,
183
, p.
105523
.
10.
Chen
,
D.
, and
Kulkarni
,
Y.
,
2015
, “
Entropic Interaction Between Fluctuating Twin Boundaries
,”
J. Mech. Phys. Solids
,
84
, pp.
59
71
.
11.
Chen
,
D.
, and
Kulkarni
,
Y.
,
2017
, “
Thermal Fluctuations as a Computational Microscope for Studying Crystalline Interfaces: A Mechanistic Perspective
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121001
.
12.
Tinevez
,
J.-Y.
,
Schulze
,
U.
,
Salbreux
,
G.
,
Roensch
,
J.
,
Joanny
,
J.-F.
, and
Paluch
,
E.
,
2009
, “
Role of Cortical Tension in Bleb Growth
,”
Proc. Natl. Acad. Sci. USA
,
106
(
44
), pp.
18581
18586
.
13.
Braunger
,
J. A.
,
Brückner
,
B. R.
,
Nehls
,
S.
,
Pietuch
,
A.
,
Gerke
,
V.
,
Mey
,
I.
,
Janshoff
,
A.
, and
Steinem
,
C.
,
2014
, “
Phosphatidylinositol 4, 5-bisphosphate Alters the Number of Attachment Sites Between Ezrin and Actin Filaments
,”
J. Biol. Chem.
,
289
(
14
), pp.
9833
9843
.
14.
Mogilner
,
A.
, and
Oster
,
G.
,
1996
, “
Cell Motility Driven by Actin Polymerization
,”
Biophys. J.
,
71
(
6
), pp.
3030
3045
.
15.
Pollard
,
T. D.
, and
Borisy
,
G. G.
,
2003
, “
Cellular Motility Driven by Assembly and Disassembly of Actin Filaments
,”
Cell
,
112
(
4
), pp.
453
465
.
16.
Gauthier
,
N. C.
,
Masters
,
T. A.
, and
Sheetz
,
M. P.
,
2012
, “
Mechanical Feedback Between Membrane Tension and Dynamics
,”
Trends Cell. Biol.
,
22
(
10
), pp.
527
535
.
17.
Maître
,
J.-L.
, and
Heisenberg
,
C.-P.
,
2011
, “
The Role of Adhesion Energy in Controlling Cell–Cell Contacts
,”
Curr. Opin. Cell Biol.
,
23
(
5
), pp.
508
514
.
18.
Boulant
,
S.
,
Kural
,
C.
,
Zeeh
,
J.-C.
,
Ubelmann
,
F.
, and
Kirchhausen
,
T.
,
2011
, “
Actin Dynamics Counteract Membrane Tension During Clathrin-Mediated Endocytosis
,”
Nat. Cell Biol.
,
13
(
9
), pp.
1124
1131
.
19.
Nassoy
,
P.
, and
Lamaze
,
C.
,
2012
, “
Stressing Caveolae New Role in Cell Mechanics
,”
Trends Cell Biol.
,
22
(
7
), pp.
381
389
.
20.
Lieber
,
A. D.
,
Yehudai-Resheff
,
S.
,
Barnhart
,
E. L.
,
Theriot
,
J. A.
, and
Keren
,
K.
,
2013
, “
Membrane Tension in Rapidly Moving Cells is Determined by Cytoskeletal Forces
,”
Curr. Biol.
,
23
(
15
), pp.
1409
1417
.
21.
Pietuch
,
A.
,
Brückner
,
B. R.
, and
Janshoff
,
A.
,
2013
, “
Membrane Tension Homeostasis of Epithelial Cells Through Surface Area Regulation in Response to Osmotic Stress
,”
Biochim. Biophys. Acta Mol. Cell. Res.
,
1833
(
3
), pp.
712
722
.
22.
Liu
,
Y.
,
Belkina
,
N. V.
,
Park
,
C.
,
Nambiar
,
R.
,
Loughhead
,
S. M.
,
Patino-Lopez
,
G.
, and
Ben-Aissa
,
K.
,
2012
, “
Constitutively Active Ezrin Increases Membrane Tension, Slows Migration, and Impedes Endothelial Transmigration of Lymphocytes In Vivo in Mice
,”
Blood J. Am. Soc. Hematol.
,
119
(
2
), pp.
445
453
.
23.
Abbena
,
E.
,
Salamon
,
S.
, and
Gray
,
A.
,
2006
,
Modern Differential Geometry of Curves and Surfaces With Mathematica
, 3rd ed.,
CRC Press
,
New York
.
24.
Helfrich
,
W.
,
1973
, “
Elastic Properties of Lipid Bilayers: Theory and Possible Experiments
,”
Z. Naturforsch. C
,
28
(
11–12
), pp.
693
703
.
25.
Safran
,
S. A.
,
2003
,
Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.