A simple phenomenological model is used to study interrelations between material properties, growth-induced residual stresses, and opening angles in arteries. The artery is assumed to be a thick-walled tube composed of an orthotropic pseudoelastic material. In addition, the normal mature vessel is assumed to have uniform circumferential wall stress, which is achieved here via a mechanical growth law. Residual stresses are computed for three configurations: the unloaded intact artery, the artery after a single transmural cut, and the inner and outer rings of the artery created by combined radial and circumferential cuts. The results show that the magnitudes of the opening angles depend strongly on the heterogeneity of the material properties of the vessel wall and that multiple radial and circumferential cuts may be needed to relieve all residual stress. In addition, comparing computed opening angles with published experimental data for the bovine carotid artery suggests that the material properties change continuously across the vessel wall and that stress, not strain, correlates well with growth in arteries.

1.
Chuong, C. J., and Fung, Y. C., 1986, “Residual Stress in Arteries,” Frontiers in Biomechanics, Schmid-Schonbein, G. W., Woo, S. L. Y., and Zweifach, B. W., eds., Springer, New York, pp. 117–129.
2.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1989
, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
,
65
, pp.
1340
1349
.
3.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1989
, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
,
111
, pp.
325
335
.
4.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1991
, “
Changes of Zero-Stress State of Rat Pulmonary Arteries in Hypoxic Hypertension
,”
J. Appl. Physiol.
,
70
, pp.
2455
2470
.
5.
Rodbard
,
S.
,
1970
, “
Negative Feedback Mechanisms in the Architecture and Function of the Connective and Cardiovascular Tissues
,”
Perspect. Biol. Med.
,
13
, pp.
507
527
.
6.
Taber
,
L. A.
,
1995
, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
,
48
, pp.
487
545
.
7.
Vaishnav, R. N., and Vossoughi, J., 1983, “Estimation of Residual Strains in Aortic Segments,” Recent Developments in Biomedical Engineering, Hall, C. W., ed., New York, Pergamon Press, pp. 330–333.
8.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
,
1987
, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
,
20
, pp.
235
239
.
9.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1988
, “
Zero-Stress States of Arteries
,”
ASME J. Biomech. Eng.
,
110
, pp.
82
84
.
10.
Omens
,
J. H.
, and
Fung
,
Y. C.
,
1990
, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
,
66
, pp.
37
45
.
11.
Han
,
H. C.
, and
Fung
,
Y. C.
,
1991
, “
Residual Strains in Porcine and Canine Trachea
,”
J. Biomech.
,
24
, pp.
307
315
.
12.
Xie
,
J. P.
,
Liu
,
S. Q.
,
Yang
,
R. F.
, and
Fung
,
Y. C.
,
1991
, “
The Zero-Stress State of Rat Veins and Vena Cava
,”
ASME J. Biomech. Eng.
,
113
, pp.
36
41
.
13.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1992
, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken into Consideration
,”
Am. J. Physiol.
,
262
, pp.
H544–H552
H544–H552
.
14.
Taber
,
L. A.
,
Hu
,
N.
,
Pexieder
,
T.
,
Clark
,
E. B.
, and
Keller
,
B. B.
,
1993
, “
Residual Strain in the Ventricle of the Stage 16–24 Chick Embryo
,”
Circ. Res.
,
72
, pp.
455
462
.
15.
Vossoughi, J., Hedjazi, Z., and Borris, F. S., 1993, “Intimal Residual Stress and Strain in Large Arteries,” Proc. Summer Bioengineering Conference, Langrana, N. A., Friedman, M. H., and Grood, E. S., eds., New York, ASME, pp. 434–437.
16.
Greenwald
,
S. E.
,
Moore
,
J. E. J.
,
Rachev
,
A.
,
Kane
,
T. P. C.
, and
Meister
,
J. J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
,
119
, pp.
438
444
.
17.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
, pp.
343
357
.
18.
Taber
,
L. A.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
, pp.
348
354
.
19.
Green, A. E., and Zerna, W., 1968, Theoretical Elasticity, 2nd ed., Oxford University Press, London.
20.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
, pp.
455
467
.
21.
Rachev
,
A.
,
1997
, “
Theoretical Study of the Effect of Stress-Dependent Remodeling on Arterial Geometry under Hypertensive Conditions
,”
J. Biomech.
,
30
, pp.
819
827
.
22.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
.
23.
Berry
,
C. L.
, and
Greenwald
,
S. E.
,
1976
, “
Effects of Hypertension on the Static Mechanical Properties and Chemical Composition of the Rat Aorta
,”
Cardiovasc. Res.
,
10
, pp.
437
451
.
24.
von Maltzahn
,
W. W.
, and
Warriyar
,
R. G.
,
1984
, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
,
17
, pp.
839
847
.
25.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
, pp.
268
274
.
26.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.
27.
Humphrey
,
J. D.
,
1995
, “
Arterial Wall Mechanics: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
, pp.
1
162
.
28.
Taber
,
L. A.
,
1998
, “
Biomechanical Growth Laws for Muscle Tissue
,”
J. Theor. Biol.
,
193
, pp.
201
213
.
29.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes: The Art of Scientific Computing, 2nd ed., Cambridge Univ. Press, New York.
30.
Feldman
,
S. A.
, and
Glagov
,
S.
,
1971
, “
Transmural Collagen and Elastin Gradients in Human Aortas: Reversal with Age
,”
Atherosclerosis
,
13
, pp.
385
394
.
31.
Demiray
,
H.
, and
Vito
,
R. P.
,
1991
, “
A Layered Cylindrical Shell Model for an Aorta
,”
Int. J. Eng. Sci.
,
29
, pp.
47
54
.
32.
Xie
,
J.
,
Zhou
,
J.
, and
Fung
,
Y. C.
,
1995
, “
Bending of Blood Vessel Wall: Stress–Strain Laws of the Intima-Media and Adventitial Layers
,”
ASME J. Biomech. Eng.
,
117
, pp.
136
145
.
33.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
,
1974
, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree
,”
J. Biomech.
,
7
, pp.
357
370
.
34.
Gibbons
,
G. H.
, and
Dzau
,
V. J.
,
1994
, “
The Emerging Concept of Vascular Remodeling
,”
N. Engl. J. Med.
,
330
, pp.
1431
1438
.
35.
Langille
,
B. L.
,
1996
, “
Arterial Remodeling: Relation to Hemodynamics
,”
Can. J. Physiol. Pharmacol.
,
74
, pp.
834
841
.
36.
Luo
,
G.
,
Cowin
,
S. C.
,
Sadegh
,
A. M.
, and
Arramon
,
Y. P.
,
1995
, “
Implementation of Strain Rate as a Bone Remodeling Stimulus
,”
ASME J. Biomech. Eng.
,
117
, pp.
329
338
.
37.
Zeller
,
P. J.
, and
Skalak
,
T. C.
,
1998
, “
Contribution of Individual Structural Components in Determining the Zero-Stress State in Small Arteries
,”
J. Vasc. Res.
,
35
, pp.
8
17
.
38.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
, pp.
459
468
.
You do not currently have access to this content.