Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model, which was presented in our previous study. The steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results, and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates, or decreasing dialysate flow rates.

1.
Levin
,
R. L.
, and
Miller
,
T. W.
, 1981, “
An Optimum Method for the Introduction or Removal of Permeable Cryoprotectants—Isolated Cells
,”
Cryobiology
0011-2240,
18
(
1
), pp.
32
48
.
2.
Mazur
,
P.
, 1984, “
Freezing of Living Cells—Mechanisms and Implications
,”
Am. J. Physiol.
0002-9513,
247
(
3
), pp.
125
142
.
3.
Gao
,
D. Y.
,
Liu
,
J.
,
Liu
,
C.
,
McGann
,
L. E.
,
Watson
,
P. F.
,
Kleinhans
,
F. W.
,
Mazur
,
P.
,
Critser
,
E. S.
, and
Critser
,
J. K.
, 1995, “
Prevention of Osmotic Injury to Human Spermatozoa During Addition and Removal of Glycerol
,”
Hum. Reprod.
0268-1161,
10
(
5
), pp.
1109
1122
.
4.
Liu
,
J.
,
Zieger
,
M. A. J.
,
Lakey
,
J. R. T.
,
Woods
,
E. J.
, and
Critser
,
J. K.
, 1997, “
The Determination of Membrane Permeability Coefficients of Canine Pancreatic Islet Cells and Their Application to Islet Cryopreservation
,”
Cryobiology
0011-2240,
35
(
1
), pp.
1
13
.
5.
Woods
,
E. J.
,
Liu
,
J.
,
Gilmore
,
J. A.
,
Reid
,
T. J.
,
Gao
,
D. Y.
, and
Critser
,
J. K.
, 1999, “
Determination of Human Platelet Membrane Permeability Coefficients Using the Kedem-Katchalsky Formalism: Estimates From Two- vs Three-Parameter Fits
,”
Cryobiology
0011-2240,
38
(
3
), pp.
200
208
.
6.
Liu
,
J.
,
Christian
,
J. A.
, and
Critser
,
J. K.
, 2002, “
Canine RBC Osmotic Tolerance and Membrane Permeability
,”
Cryobiology
0011-2240,
44
(
3
), pp.
258
268
.
7.
Xu
,
X.
,
Cui
,
Z. F.
, and
Urban
,
J. P. G.
, 2003, “
Measurement of the Chondrocyte Membrane Permeability to Me2SO, Glycerol and 1,2-Propanediol
,”
Med. Eng. Phys.
1350-4533,
25
(
7
), pp.
573
579
.
8.
Ebertz
,
S. L.
, and
McGann
,
L. E.
, 2004, “
Cryoprotectant Permeability Parameters for Cells Used in a Bioengineered Human Corneal Equivalent and Applications for Cryopreservation
,”
Cryobiology
0011-2240,
49
(
2
), pp.
169
180
.
9.
Schneider
,
U.
, and
Mazur
,
P.
, 1984, “
Osmotic Consequences of Cryoprotectant Permeability and Its Relation to the Survival of Frozen-Thawed Embryos
,”
Theriogenology
0093-691X,
21
(
1
), pp.
68
79
.
10.
Adams
,
S. L.
,
Kleinhans
,
F. W.
,
Mladenov
,
P. V.
, and
Hessian
,
P. A.
, 2003, “
Membrane Permeability Characteristics and Osmotic Tolerance Limits of Sea Urchin (Evechinus chloroticus) Eggs
,”
Cryobiology
0011-2240,
47
(
1
), pp.
1
13
.
11.
Syme
,
R.
,
Bewick
,
M.
,
Stewart
,
D.
,
Porter
,
K.
,
Chadderton
,
T.
, and
Glück
,
S.
, 2004, “
The Role of Depletion of Dimethyl Sulfoxide Before Autografting: On Hematologic Recovery, Side Effects, and Toxicity
,”
Biol. Blood Marrow Transplant
1083-8791,
10
(
2
), pp.
135
141
.
12.
Calmels
,
B.
,
Houzé
,
P.
,
Hengesse
,
J. -C.
,
Ducrot
,
T.
,
Malenfant
,
C.
, and
Chabannon
,
C.
, 2003, “
Preclinical Evaluation of an Automated Closed Fluid Management Device: Cytomate (TM), for Washing Out DMSO From Hematopoietic Stem Cell Grafts After Thawing
,”
Bone Marrow Transplant
0268-3369,
31
(
9
), pp.
823
828
.
13.
Ding
,
W. P.
,
Yu
,
J.
,
Woods
,
E.
,
Heimfeld
,
S.
, and
Gao
,
D.
, 2007, “
Simulation of Removing Permeable Cryoprotective Agents From Cryopreserved Blood With Hollow Fiber Modules
,”
J. Membr. Sci.
0376-7388,
288
(
1–2
), pp.
85
93
.
14.
Arnaud
,
F.
,
Kapnik
,
E.
, and
Meryman
,
H. T.
, 2003, “
Use of Hollow Fiber Membrane Filtration for the Removal of DMSO From Platelet Concentrates
,”
Platelets
,
14
(
3
), pp.
131
137
. 0953-7104
15.
Legallais
,
C.
,
Catapano
,
G.
,
von Harten
,
B.
, and
Baurmeister
,
U.
, 2000, “
A Theoretical Model to Predict the In Vitro Performance of Hemodiafilters
,”
J. Membr. Sci.
0376-7388,
168
(
1–2
), pp.
3
15
.
16.
Zheng
,
J. M.
,
Xu
,
Y. Y.
, and
Xu
,
Z. K.
, 2003, “
Flow Distribution in a Randomly Packed Hollow Fiber Membrane Module
,”
J. Membr. Sci.
0376-7388,
211
(
2
), pp.
263
269
.
17.
Gostoli
,
C.
, and
Gatta
,
A.
, 1980, “
Mass-Transfer in a Hollow Fiber Dialyzer
,”
J. Membr. Sci.
0376-7388,
6
, pp.
133
148
.
18.
Chang
,
Y. L.
, and
Lee
,
C. J.
, 1988, “
Solute Transport Characteristics in Hemodiafiltration
,”
J. Membr. Sci.
0376-7388,
39
(
2
), pp.
99
111
.
19.
Jaffrin
,
M. Y.
,
Ding
,
L.
, and
Laurent
,
J. M.
, 1990, “
Simultaneous Convective and Diffusive Mass Transfers in a Hemodialyser
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
2
), pp.
212
219
.
20.
Wupper
,
A.
,
Dellanna
,
F.
,
Baldamus
,
C. A.
, and
Woermann
,
D.
, 1997, “
Local Transport Processes in High-Flux Hollow Fiber Dialyzers
,”
J. Membr. Sci.
0376-7388,
131
(
1–2
), pp.
181
193
.
21.
Kedem
,
O.
, and
Katchalsky
,
A.
, 1958, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta
0006-3002,
27
(
2
), pp.
229
246
.
22.
Hosoya
,
N.
, and
Sakai
,
K.
, 1990, “
Backdiffusion Rather Than Backfiltration Enhances Endotoxin Transport Through Highly Permeable Dialysis Membranes
,”
ASAIO Trans.
0889-7190,
36
, pp.
311
313
.
23.
Liao
,
Z. J.
,
Klein
,
E.
,
Poh
,
C. K.
,
Huang
,
Z.
,
Lu
,
J.
,
Hardy
,
P. A.
, and
Gao
,
D.
, 2005, “
Measurement of Hollow Fiber Membrane Transport Properties in Hemodialyzers
,”
J. Membr. Sci.
0376-7388,
256
(
1–2
), pp.
176
183
.
24.
Savitz
,
D.
,
Sidel
,
V. W.
, and
Solomon
,
A. K.
, 1964, “
Osmotic Properties of Human Red Cells
,”
J. Gen. Physiol.
0022-1295,
48
(
1
), pp.
79
94
.
25.
Valdez
,
D. M.
, Jr.
,
Miyamoto
,
A.
,
Hara
,
T.
,
Seki
,
S.
,
Kasai
,
M.
, and
Edashige
,
K.
, 2005, “
Water- and Cryoprotectant-Permeability of Mature and Immature Oocytes in the Medaka (Oryzias latipes)
,”
Cryobiology
0011-2240,
50
(
1
), pp.
93
102
.
26.
Papanek
,
T. H.
, 1978, “
The Water Permeability and the Human Erythrocyte in the Temperature Range +20°C to −10°C
,” Ph.D. thesis, MIT.
27.
Meryman
,
H. T.
, and
Hornblow
,
M.
, 1972, “
Method for Freezing and Washing Red Blood-Cells Using a High Glycerol Concentration
,”
Transfusion (Bethesda, Md.)
0041-1132,
12
(
3
), pp.
145
156
.
You do not currently have access to this content.