The usefulness of forward dynamic simulations to studies of human motion is well known. Although the musculoskeletal models used in these studies are generic, the modeling of specific components, such as the knee joint, may vary. Our two objectives were (1) to investigate the effects of three commonly used knee models on forward dynamic simulation results, and (2) to study the sensitivity of simulation results to variations in kinematics for the most commonly used knee model. To satisfy the first objective, three different tibiofemoral models were incorporated into an existing forward dynamic simulation of recumbent pedaling, and the resulting kinematics, pedal forces, muscle forces, and joint reaction forces were compared. Two of these models replicated the rolling and sliding motion of the tibia on the femur, while the third was a simple pin joint. To satisfy the second objective, variations in the most widely used of the three knee models were created by adjusting the experimental data used in the development of this model. These variations were incorporated into the pedaling simulation, and the resulting data were compared with the unaltered model. Differences between the two rolling-sliding models were smaller than differences between the pin-joint model and the rolling-sliding models. Joint reactions forces, particularly at the knee, were highly sensitive to changes in knee joint model kinematics, as high as 61% root mean squared difference, normalized by the corresponding peak force of the unaltered reference model. Muscle forces were also sensitive, as high as 30% root mean squared difference. Muscle excitations were less sensitive. The observed changes in muscle force and joint reaction forces were caused primarily by changes in the moment arms and musculotendon lengths of the quadriceps. Although some level of inaccuracy in the knee model may be acceptable for calculations of muscle excitation timing, a representative model of knee kinematics is necessary for accurate calculation of muscle and joint reaction forces.

1.
Nisell
,
R.
, 1985, “
Mechanics of the Knee. A Study of Joint and Muscle Load With Clinical Applications
,”
Acta Orthop. Scand. Suppl.
0300-8827,
216
, pp.
1
42
.
2.
Kuster
,
M. S.
,
Wood
,
G. A.
,
Stachowiak
,
G. W.
, and
Gachter
,
A.
, 1997, “
Joint Load Considerations in Total Knee Replacement
,”
J. Bone Joint Surg. Br.
0301-620X,
79
(
1
), pp.
109
113
.
3.
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2000, “
Knee Joint Loading in Forward Versus Backward Pedaling: Implications for Rehabilitation Strategies
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
(
7
), pp.
528
535
.
4.
Ekevad
,
M.
, and
Lundberg
,
B.
, 1995, “
Simulation of ‘Smart’ Pole Vaulting
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1079
1090
.
5.
Kautz
,
S. A.
, and
Hull
,
M. L.
, 1995, “
Dynamic Optimization Analysis for Equipment Setup Problems in Endurance Cycling
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1391
1401
.
6.
Jin
,
D.
,
Zhang
,
R.
,
Dimo
,
H. O.
,
Wang
,
R.
, and
Zhang
,
J.
, 2003, “
Kinematic and Dynamic Performance of Prosthetic Knee Joint Using Six-Bar Mechanism
,”
J. Rehabil. Res. Dev.
0748-7711,
40
(
1
), pp.
39
48
.
7.
Fregly
,
B. J.
, and
Zajac
,
F. E.
, 1996, “
A State-Space Analysis of Mechanical Energy Generation, Absorption, and Transfer During Pedaling
,”
J. Biomech.
0021-9290,
29
(
1
), pp.
81
90
.
8.
Zajac
,
F. E.
, 2002, “
Understanding Muscle Coordination of the Human Leg With Dynamical Simulations
,”
J. Biomech.
0021-9290,
35
(
8
), pp.
1011
1018
.
9.
Kautz
,
S. A.
,
Neptune
,
R. R.
, and
Zajac
,
F. E.
, 2000, “
General Coordination Principles Elucidated by Forward Dynamics: Minimum Fatigue Does Not Explain Muscle Excitation in Dynamic Tasks
,”
Motor Control
1087-1640,
4
(
1
), pp.
75
80
, discussion pp. 97–116.
10.
Gfohler
,
M.
, and
Lugner
,
P.
, 2004, “
Dynamic Simulation of FES-Cycling: Influence of Individual Parameters
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
12
(
4
), pp.
398
405
.
11.
Dariush
,
B.
,
Parnianpour
,
M.
, and
Hemami
,
H.
, 1998, “
Stability and a Control Strategy of a Multilink Musculoskeletal Model With Applications in FES
,”
IEEE Trans. Biomed. Eng.
0018-9294,
45
(
1
), pp.
3
14
.
12.
Delp
,
S. L.
,
Statler
,
K.
, and
Carroll
,
N. C.
, 1995, “
Preserving Plantar Flexion Strength After Surgical Treatment for Contracture of the Triceps Surae: A Computer Simulation Study
,”
J. Orthop. Res.
0736-0266,
13
(
1
), pp.
96
104
.
13.
Riewald
,
S. A.
, and
Delp
,
S. L.
, 1997, “
The Action of the Rectus Femoris Muscle Following Distal Tendon Transfer: Does It Generate Knee Flexion Moment?
,”
Dev. Med. Child Neurol.
0012-1622,
39
(
2
), pp.
99
105
.
14.
Yamaguchi
,
G. T.
, and
Zajac
,
F. E.
, 1989, “
A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism
,”
J. Biomech.
0021-9290,
22
(
1
), pp.
1
10
.
15.
Lu
,
T. W.
,
O'Connor
,
J. J.
,
Taylor
,
S. J.
, and
Walker
,
P. S.
, 1997, “
Validation of a Lower Limb Model With In Vivo Femoral Forces Telemetered From Two Subjects
,”
J. Biomech.
0021-9290,
31
(
1
), pp.
63
69
.
16.
O'Connor
,
J. J.
,
Shercliff
,
T. L.
,
Biden
,
E.
, and
Goodfellow
,
J. W.
, 1989, “
The Geometry of the Knee in the Sagittal Plane
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203
(
4
), pp.
223
233
.
17.
Jonkers
,
I.
,
Spaepen
,
A.
,
Papaioannou
,
G.
, and
Stewart
,
C.
, 2002, “
An EMG-Based, Muscle Driven Forward Simulation of Single Support Phase of Gait
,”
J. Biomech.
0021-9290,
35
(
5
), pp.
609
619
.
18.
Stansfield
,
B. W.
,
Nicol
,
A. C.
,
Paul
,
J. P.
,
Kelly
,
I. G.
,
Graichen
,
F.
, and
Bergmann
,
G.
, 2003, “
Direct Comparison of Calculated Hip Joint Contact Forces With Those Measured Using Instrumented Implants. An Evaluation of a Three-Dimensional Mathematical Model of the Lower Limb
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
929
936
.
19.
Raikova
,
R. T.
, and
Prilutsky
,
B. I.
, 2001, “
Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses
,”
J. Biomech.
0021-9290,
34
(
10
), pp.
1243
1255
.
20.
D'Lima
,
D. D.
,
Townsend
,
C. P.
,
Arms
,
S. W.
,
Morris
,
B. A.
, and
Colwell
,
C. W.
, Jr.
, 2005, “
An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
299
304
.
21.
Bergmann
,
G.
,
Graichen
,
F.
,
Siraky
,
J.
,
Jendrzynski
,
H.
, and
Rohlmann
,
A.
, 1988, “
Multichannel Strain Gauge Telemetry for Orthopaedic Implants
,”
J. Biomech.
0021-9290,
21
(
2
), pp.
169
176
.
22.
Arnold
,
A. S.
,
Salinas
,
S.
,
Asakawa
,
D. J.
, and
Delp
,
S. L.
, 2000, “
Accuracy of Muscle Moment Arms Estimated From MRI-Based Musculoskeletal Models of the Lower Extremity
,”
Comput. Aided Surg.
1092-9088,
5
(
2
), pp.
108
119
.
23.
Smith
,
D. K.
,
Berquist
,
T. H.
,
An
,
K. N.
,
Robb
,
R. A.
, and
Chao
,
E. Y.
, 1989, “
Validation of Three-Dimensional Reconstructions of Knee Anatomy: CT vs MR Imaging
,”
J. Comput. Assist. Tomogr.
0363-8715,
13
(
2
), pp.
294
301
.
24.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
,
Day
,
M. K.
,
Lee
,
P. L.
,
Kwong-Fu
,
H.
, and
Edgerton
,
V. R.
, 1992, “
Physiological Cross-Sectional Area of Human Leg Muscles Based on Magnetic Resonance Imaging
,”
J. Orthop. Res.
0736-0266,
10
(
6
), pp.
926
934
.
25.
Koo
,
T. K.
,
Mak
,
A. F.
, and
Hung
,
L. K.
, 2002, “
In Vivo Determination of Subject-Specific Musculotendon Parameters: Applications to the Prime Elbow Flexors in Normal and Hemiparetic Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
(
5
), pp.
390
399
.
26.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2007, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
5
), pp.
782
793
.
27.
Scovil
,
C. Y.
, and
Ronsky
,
J. L.
, 2006, “
Sensitivity of a Hill-Based Muscle Model to Perturbations in Model Parameters
,”
J. Biomech.
0021-9290,
39
(
11
), pp.
2055
2063
.
28.
Neptune
,
R. R.
, and
Hull
,
M. L.
, 1998, “
Evaluation of Performance Criteria for Simulation of Submaximal Steady-State Cycling Using a Forward Dynamic Model
,”
J. Biomech. Eng.
0148-0731,
120
(
3
), pp.
334
341
.
29.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
, 1997, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
595
602
.
30.
Hakansson
,
N. A.
, and
Hull
,
M. L.
, 2007, “
Influence of Pedaling Rate on Muscle Mechanical Energy in Low Power Recumbent Pedaling Using Forward Dynamic Simulations
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
15
(
4
), pp.
509
516
.
31.
Delp
,
S. L.
, and
Loan
,
J. P.
, 2000, “
A Computation Framework for Simulation and Analysis of Human and Animal Movement
,”
IEEE Comput. Sci. Eng.
1070-9924,
2
(
5
), pp.
46
55
.
32.
Fregly
,
B. J.
, 1993, “
The Significance of Crank Load Dynamics to Steadystate Pedaling Biomechanics: An Experimental and Computer Modeling Study
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
33.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
, 2003, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
321
328
.
34.
Thelen
,
D. G.
, and
Anderson
,
F. C.
, 2006, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1107
1115
.
35.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
0021-9290,
34
(
2
), pp.
153
161
.
36.
Hakansson
,
N. A.
, and
Hull
,
M. L.
, 2005, “
Functional Roles of the Leg Muscles When Pedaling in the Recumbent Versus the Upright Position
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
301
310
.
37.
Koehle
,
M. J.
, and
Hull
,
M. L.
, 2008, “
A Method of Calculating Physiologically Relevant Joint Reaction Forces During Forward Dynamic Simulations of Movement From an Existing Knee Model
,”
J. Biomech.
0021-9290,
41
(
5
), pp.
1143
1146
.
38.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
0018-9294,
37
(
8
), pp.
757
767
.
39.
Zavatsky
,
A. B.
, and
O’Connor
,
J. J.
, 1992, “
A Model of Human Knee Ligaments in the Sagittal Plane. Part 1: Response to Passive Flexion
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
206
(
3
), pp.
125
134
.
40.
van Dijk
,
R.
,
Huiskes
,
R.
, and
Selvik
,
G.
, 1979, “
Roentgen Stereophotogrammetric Methods for the Evaluation of the Three Dimensional Kinematic Behaviour and Cruciate Ligament Length Patterns of the Human Knee Joint
,”
J. Biomech.
0021-9290,
12
(
9
), pp.
727
731
.
41.
Yoshioka
,
Y.
,
Siu
,
D. W.
,
Scudamore
,
R. A.
, and
Cooke
,
T. D.
, 1989, “
Tibial Anatomy and Functional Axes
,”
J. Orthop. Res.
0736-0266,
7
(
1
), pp.
132
137
.
42.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
, 2005, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
0883-5403,
20
(
8
), pp.
1060
1067
.
43.
Mensch
,
J. S.
, and
Amstutz
,
H. C.
, 1975, “
Knee Morphology as a Guide to Knee Replacement
,”
Clin. Orthop. Relat. Res.
0009-921X,
112
, pp.
231
241
.
44.
Koehle
,
M. J.
, 2007, “
Development of Knee Models for Use in Forward Dynamic Simulations of Movement and Their Effect on Simulation Results
,” MS Thesis in Biomedical Engineering, University of California at Davis, Davis, CA.
45.
van Eijden
,
T. M.
,
de Boer
,
W.
, and
Weijs
,
W. A.
, 1985, “
The Orientation of the Distal Part of the Quadriceps Femoris Muscle as a Function of the Knee Flexion-Extension Angle
,”
J. Biomech.
0021-9290,
18
(
10
), pp.
803
809
.
46.
Gill
,
H. S.
, and
O’Connor
,
J. J.
, 1996, “
Biarticulating Two-Dimensional Computer Model of the Human Patellofemoral Joint
,”
Clin Biomech. (Bristal, Avon)
,
11
(
2
), pp.
81
89
.
47.
Montgomery
,
S. C.
,
Moorehead
,
J. D.
,
Davidson
,
J. S.
,
Lowe
,
D.
, and
Dangerfield
,
P. H.
, 1998, “
A New Technique for Measuring the Rotational Axis Pathway of a Moving Knee
,”
The Knee
0968-0160,
5
(
4
), pp.
289
295
.
You do not currently have access to this content.