Abstract

A negative Poisson's ratio structural vascular stent with arrow-shaped cell is proposed in the paper. In order to improve the bending flexibility of the stent, three shapes of connecting bars, namely, U-shaped, S-shaped, and linear, are designed. The influence of structural parameters of the stent connecting bars on the bending performance of the stent is studied using the finite element method and experimental method. The research results show that compared to S-shaped stents, U-shaped stents have better bending flexibility. In addition, the influence of the parameters of the connection bars of a U-shaped stent on its flexibility is also explored. The longer the length of the U-shaped connection bars, the lower the corresponding bending stiffness and better bending flexibility. The larger the width of the U-shaped connecting bar, the greater the bending stiffness of the stent, and the worse its bending flexibility. And some experiments are conducted using the four points bending method. The deformation of the S-shaped stent and U-shaped stent under bending is very similar, and the bending stiffness of the U-shaped stent is lower than that of the S-shaped bracket, which also verified the correctness of the finite element calculation.

References

1.
Liu
,
Y.
, and
Hu
,
H.
,
2010
, “
A Review on Auxetic Structures and Polymeric Materials
,”
Sci. Res. Essays
,
5
(
10
), pp.
1052
1063
.https://academicjournals.org/article/article1380623913_Liu%20and%20Hu.pdf
2.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
,
37
(
4
), pp.
495
501
.10.1016/j.jbiomech.2003.09.002
3.
Shen
,
X.
,
Jiang
,
J. B.
,
Zhu
,
H. F.
,
Deng
,
Y. Q.
, and
Ji
,
S.
,
2020
, “
Numerical Investigation of the Flexibility of a New Self-Expandable Tapered Stent
,”
J. Mech.
,
36
(
4
), pp.
577
584
.10.1017/jmech.2020.11
4.
Vellaparambil
,
R.
,
Han
,
W. S.
,
Di Giovanni
,
P.
, and
Stéphane
,
A.
,
2023
, “
Potential of Auxetic Designs in Endovascular Aortic Repair: A Computational Study of Their Mechanical Performance
,”
J. Mech. Behav. Biomed. Mater.
,
138
, p.
105644
.10.1016/j.jmbbm.2022.105644
5.
Ying
,
G.
,
Jing
,
L.
,
Dong
,
Z.
, and
Lu
,
W.
,
2018
, “
Comparative Study of the Effect of Structural Parameters on the Flexibility of Endovascular Stent Grafts
,”
Adv. Mater. Sci. Eng.
,
2018
(
1
), pp.
1
10
.10.1155/2018/3046576
6.
Yasuhiro
,
S.
,
Tetsuya
,
T.
,
Satoshi
,
T.
, and
Tanishita
,
K.
,
2010
, “
Mechanical Design of an Intracranial Stent for Treating Cerebral Aneurysms
,”
Med. Eng. Phys.
,
32
(
9
), pp.
1015
1024
.10.1016/j.medengphy.2010.07.002
7.
Jianjun
,
L.
,
Qiyi
,
L.
,
Zhiyong
,
X.
, and
Li
,
Y.
,
2010
, “
Fatigue Life Analysis of Coronary Stent by Finite Element Analysis
,”
Med. Biomech.
,
25
(
1
), pp.
68
73
.https://www.researchgate.net/publication/287832968_Fatigue_life_analysis_of_coronary_stent_by_finite_element_analysis
8.
Shi
,
W.
,
Li
,
H.
,
Zhu
,
T.
,
Jin
,
Y.
,
Wang
,
H.
,
Yang
,
J.
, and
Zhao
,
D.
,
2020
, “
Study on the Bending Behavior of Biodegradable Metal Cerebral Vascular Stents Using Finite Element Analysis
,”
J. Biomech.
,
108
, p.
109856
.10.1016/j.jbiomech.2020.109856
9.
Bae
,
I.-H.
,
Lim
,
K.-S.
,
Park
,
J.-K.
,
Park
,
D.-S.
,
Lee
,
S.-Y.
,
Jang
,
E.-J.
,
Ji
,
M. S.
, et al.,
2015
, “
Mechanical Behavior and in Vivo Properties of Newly Designed Bare Metal Stent for Enhanced Flexibility
,”
J. Ind. Eng. Chem.
,
21
, pp.
1295
1300
.10.1016/j.jiec.2014.05.045
10.
Zheng
,
Q.
,
Wei
,
M.
,
You
,
Z.
,
An
,
M.
, and
Li
,
Z.
,
2015
, “
Finite Element Analysis on the Longitudinal Flexibility of the Cerebral Intra Aneurysmal Stent
,”
J. Taiyuan Univ. Technol.
,
46
(
3
), pp.
352
356
.
11.
Kim
,
D. B.
,
Choi
,
H.
,
Joo
,
S. M.
,
Kim
,
H. K.
,
Shin
,
J. H.
,
Hwang
,
M. H.
,
Choi
,
J.
, et al.,
2013
, “
A Comparative Reliability and Performance Study of Different Stent Designs in Terms of Mechanical Properties: Foreshortening, Recoil, Radial Force, and Flexibility
,”
Artif. Organs
,
37
(
4
), pp.
368
379
.10.1111/aor.12001
12.
Azaouzi
,
M.
,
Makradi
,
A.
, and
Belouettar
,
S.
,
2013
, “
Numerical Investigations of the Structural Behavior of a Balloon Expandable Stent Design Using Finite Element Method
,”
Comput. Mater. Sci.
,
72
, pp.
54
61
.10.1016/j.commatsci.2013.01.031
13.
Wang
,
X.
,
Feng
,
H. Q.
,
Wang
,
W. W.
,
Zhang
,
R. M.
, and
Cheng
,
Y. L.
,
2013
, “
Research on Biomechanics Properties for Balloon-Expandable Intracoronary Stents
,”
Chin. J. Biomed. Eng.
,
32
(
2
), pp.
203
210
.
14.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Finite Element Analysis of the Implantation of a Self-Expanding Stent: Impact of Lesion Calcification
,”
ASME J. Med. Devices
,
6
(
2
), p.
021001
.10.1115/1.4006357
15.
Migliavacca
,
F.
,
Petrini
,
L.
,
Colombo
,
M.
,
Auricchio
,
F.
, and
Pietrabissa
,
R.
,
2002
, “
Mechanical Behavior of Coronary Stents Investigated Through the Finite Element Method
,”
J. Biomech.
,
35
(
6
), pp.
803
811
.10.1016/S0021-9290(02)00033-7
16.
Xi
,
Z.
,
2018
,
Research on the Flexibility of Degradable Polymer Stents
,
Beijing University of Technology
,
Beijing, China
.
You do not currently have access to this content.