Abstract

The periprosthetic acetabular osteotomy (PAO) is a commonly used technique in orthopedics for treating developmental hip dysplasia and hip dislocation, as the most effective treatment for developmental dysplasia of the hip (DDH). However, performing PAO can be challenging for surgeons due to limited visibility and difficulty in detecting any deformations of osteotome chisels when they are deeply immersed in the pelvis. These challenges can result in serious complications, such as excessive bleeding and nerve injuries. We propose a novel precision tracking system to mitigate these risks by acquiring the chisel deformation in real-time. This system consists of a newly designed osteotome chisel with five built-in microsensors, which are finely chosen with the help of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). We propose a fast finite element method (FFEM) model to calculate the deformation of the chisel from flexibility information collected by these five sensors, where the model deformation can be predicted from a well-designed light deep neural network (DNN) model. Our model has achieved an impressive R2 value of 0.98781 and an average deformation error of only 0.07 mm in nodes compared to the experiment. The prediction time of FFEM model has been shortened to 0.33 s, and the total time including three-dimensional reconstruction and visualization has been shortened to 3.84 s. Implementing such an osteotome chisel with a deformation tracking system has shown immense potential in increasing surgical accuracy and reducing medical negligence for PAO operations.

References

1.
Facco
,
G.
,
Massetti
,
D.
,
Coppa
,
V.
,
Procaccini
,
R.
,
Greco
,
L.
,
Simoncini
,
M.
,
Mari
,
A.
,
Marinelli
,
M.
, and
Gigante
,
A.
,
2021
, “
The Use of 3D Printed Models for the Pre-Operative Planning of Surgical Correction of Pediatric Hip Deformities: A Case Series and Concise Review of the Literature
,”
Acta Bio Med.: Atenei Parmensis
,
92
(
6
), p.
e2021221
.10.23750/abm.v92i6.11703
2.
Wang
,
X.
,
Liu
,
S.
,
Peng
,
J.
,
Zhu
,
Z.
,
Zhang
,
L.
,
Guan
,
J.
, and
Chen
,
X.
,
2019
, “
Development of a Novel Customized Cutting and Rotating Template for Bernese Periacetabular Osteotomy
,”
J. Orthop. Surg. Res.
,
14
(
1
), pp.
1
10
.10.1186/s13018-019-1267-x
3.
Pollet
,
V.
,
Percy
,
V.
, and
Prior
,
H. J.
,
2017
, “
Relative Risk and Incidence for Developmental Dysplasia of the Hip
,”
J. Pediatr.
,
181
, pp.
202
207
.10.1016/j.jpeds.2016.10.017
4.
Dezateux
,
C.
, and
Rosendahl
,
K.
,
2007
, “
Developmental Dysplasia of the Hip
,”
Lancet
,
369
(
9572
), pp.
1541
1552
.10.1016/S0140-6736(07)60710-7
5.
Clohisy
,
J. C.
,
Schutz
,
A. L.
,
John
,
L. S.
,
Schoenecker
,
P. L.
, and
Wright
,
R. W.
,
2009
, “
Periacetabular Osteotomy: A Systematic Literature Review
,”
Clin. Orthop. Relat. Res.®
,
467
(
8
), pp.
2041
2052
.10.1007/s11999-009-0842-6
6.
Khan
,
O.
,
Malviya
,
A.
,
Subramanian
,
P.
,
Agolley
,
D.
, and
Witt
,
J.
,
2017
, “
Minimally Invasive Periacetabular Osteotomy Using a Modified Smith-Petersen Approach: Technique and Early Outcomes
,”
Bone Jt. J.
,
99-B
(
1
), pp.
22
28
.10.1302/0301-620X.99B1.BJJ-2016-0439.R1
7.
Goshi
,
A.
,
Fukunishi
,
S.
,
Okahisa
,
S.
,
Okada
,
T.
, and
Yoshiya
,
S.
,
2018
, “
Curved Periacetabular Osteotomy Using Intraoperative Real-Time 3-Dimensional Computed Tomography With a Robotic C-Arm System: A Case Report
,”
Medicine
,
97
(
48
), p.
e13519
.10.1097/MD.0000000000013519
8.
Saxler
,
G.
,
Marx
,
A.
,
Vandevelde
,
D.
,
Langlotz
,
U.
,
Tannast
,
M.
,
Wiese
,
M.
, and
Michaelis
,
U.
, et al.,
2004
, “
The Accuracy of Free-Hand Cup Positioning—A CT Based Measurement of Cup Placement in 105 Total Hip Arthroplasties
,”
Int. Orthop.
,
28
(
4
), pp.
198
201
.10.1007/s00264-004-0542-5
9.
Dandachli
,
W.
,
Kannan
,
V.
,
Richards
,
R.
,
Shah
,
Z.
,
Hall-Craggs
,
M.
, and
Witt
,
J.
,
2008
, “
Analysis of Cover of the Femoral Head in Normal and Dysplastic Hips: New CT-Based Technique
,”
J. Bone Jt. Surg. Br.
,
90-B
(
11
), pp.
1428
1434
.10.1302/0301-620X.90B11.20073
10.
Zhang
,
L.
,
Michaleris
,
P.
, and
Marugabandhu
,
P.
,
2007
, “
Evaluation of Applied Plastic Strain Methods for Welding Distortion Prediction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1000
1010
.10.1115/1.2716740
11.
David Müzel
,
S.
,
Bonhin
,
E. P.
,
Guimarães
,
N. M.
, and
Guidi
,
E. S.
,
2020
, “
Application of the Finite Element Method in the Analysis of Composite Materials: A Review
,”
Polymers
,
12
(
4
), p.
818
.10.3390/polym12040818
12.
Waqar
,
S.
,
Guo
,
K.
, and
Sun
,
J.
,
2021
, “
FEM Analysis of Thermal and Residual Stress Profile in Selective Laser Melting of 316 L Stainless Steel
,”
J. Manuf. Processes
,
66
, pp.
81
100
.10.1016/j.jmapro.2021.03.040
13.
Ni
,
T.
,
Pesavento
,
F.
,
Zaccariotto
,
M.
,
Galvanetto
,
U.
,
Zhu
,
Q.-Z.
, and
Schrefler
,
B. A.
,
2020
, “
Hybrid FEM and Peridynamic Simulation of Hydraulic Fracture Propagation in Saturated Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113101
.10.1016/j.cma.2020.113101
14.
Tang
,
Z.
,
Yu
,
T.
,
Xu
,
L.
, and
Liu
,
Z.
,
2013
, “
Machining Deformation Prediction for Frame Components Considering Multifactor Coupling Effects
,”
Int. J. Adv. Manuf. Technol.
,
68
(
1–4
), pp.
187
196
.10.1007/s00170-012-4718-7
15.
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2013
, “
Micro-FEM Orthogonal Cutting Model for Bone Using Microscope Images Enhanced Via Artificial Intelligence
,”
Procedia CIRP
,
8
, pp.
385
390
.10.1016/j.procir.2013.06.121
16.
Mendizabal
,
A.
,
Márquez-Neila
,
P.
, and
Cotin
,
S.
,
2020
, “
Simulation of Hyperelastic Materials in Real-Time Using Deep Learning
,”
Med. Image Anal.
,
59
, p.
101569
.10.1016/j.media.2019.101569
17.
Cheng
,
Y.
,
Wang
,
D.
,
Zhou
,
P.
, and
Zhang
,
T.
,
2018
, “
Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and Challenges
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
126
136
.10.1109/MSP.2017.2765695
18.
Gale
,
T.
,
Elsen
,
E.
, and
Hooker
,
S.
,
2019
, “
The State of Sparsity in Deep Neural Networks
,” preprint
arXiv:1902.09574
.10.48550/arXiv.1902.09574
19.
Tzeng
,
G.-H.
, and
Huang
,
J.-J.
,
2011
,
Multiple Attribute Decision Making: Methods and Applications
,
CRC Press
,
Boca Raton, FL
.
20.
Xu
,
H.
,
Nie
,
Z.
,
Xu
,
Q.
,
Li
,
Y.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2023
, “
SuperMeshing: Boosting the Mesh Density of Stress Field in Plane-Strain Problems Using Deep Learning Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
034501
.10.1115/1.4054687
21.
Xu
,
Q.
,
Nie
,
Z.
,
Xu
,
H.
,
Zhou
,
H.
,
Attar
,
H. R.
,
Li
,
N.
,
Xie
,
F.
, and
Liu
,
X.-J.
,
2022
, “
SuperMeshing: A New Deep Learning Architecture for Increasing the Mesh Density of Physical Fields in Metal Forming Numerical Simulation
,”
ASME J. Appl. Mech.
,
89
(
1
), p.
011002
.10.1115/1.4052195
22.
Nădăban
,
S.
,
Dzitac
,
S.
, and
Dzitac
,
I.
,
2016
, “
Fuzzy TOPSIS: A General View
,”
Procedia Comput. Sci.
,
91
, pp.
823
831
.10.1016/j.procs.2016.07.088
23.
Mao
,
J.
,
Zhao
,
M.
,
Wei
,
X.
, and
Zhang
,
L.
,
2022
, “
A Material Constitutive Model-Based Prediction Method for Flank Milling Force Considering the Deformation of Workpiece
,”
J. Manuf. Processes
,
84
, pp.
403
413
.10.1016/j.jmapro.2022.09.053
24.
Ma
,
W.
,
Wang
,
R.
,
Zhou
,
X.
, and
Xie
,
X.
,
2021
, “
The Finite Element Analysis-Based Simulation and Artificial Neural Network-Based Prediction for Milling Processes of Aluminum Alloy 7050
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
235
(
1–2
), pp.
265
277
.10.1177/0954405420932442
25.
Keyak
,
J.
,
Fourkas
,
M.
,
Meagher
,
J.
, and
Skinner
,
H.
,
1993
, “
Validation of an Automated Method of Three-Dimensional Finite Element Modelling of Bone
,”
ASME J. Biomed. Eng.
,
15
(
6
), pp.
505
509
.10.1016/0141-5425(93)90066-8
26.
Boryor
,
A.
,
Geiger
,
M.
,
Hohmann
,
A.
,
Wunderlich
,
A.
,
Sander
,
C.
,
Sander
,
F. M.
, and
Sander
,
F. G.
,
2008
, “
Stress Distribution and Displacement Analysis During an Intermaxillary Disjunction—A Three-Dimensional FEM Study of a Human Skull
,”
J. Biomech.
,
41
(
2
), pp.
376
382
.10.1016/j.jbiomech.2007.08.016
27.
Nasrollahi
,
V.
, and
Arezoo
,
B.
,
2012
, “
Prediction of Springback in Sheet Metal Components With Holes on the Bending Area, Using Experiments, Finite Element and Neural Networks
,”
Mater. Des. (1980–2015)
,
36
, pp.
331
336
.10.1016/j.matdes.2011.11.039
28.
Liang
,
W.
,
Wang
,
G.
,
Ning
,
X.
,
Zhang
,
J.
,
Li
,
Y.
,
Jiang
,
C.
, and
Zhang
,
N.
,
2020
, “
Application of BP Neural Network to the Prediction of Coal Ash Melting Characteristic Temperature
,”
Fuel
,
260
, p.
116324
.10.1016/j.fuel.2019.116324
29.
Jiang
,
H.
,
Nie
,
Z.
,
Yeo
,
R.
,
Farimani
,
A. B.
, and
Kara
,
L. B.
,
2021
, “
StressGAN: A Generative Deep Learning Model for Two-Dimensional Stress Distribution Prediction
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051005
.10.1115/1.4049805
30.
Nie
,
Z.
,
Jiang
,
H.
, and
Kara
,
L. B.
,
2020
, “
Stress Field Prediction in Cantilevered Structures Using Convolutional Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011002
.10.1115/1.4044097
31.
Bessho
,
M.
,
Ohnishi
,
I.
,
Matsuyama
,
J.
,
Matsumoto
,
T.
,
Imai
,
K.
, and
Nakamura
,
K.
,
2007
, “
Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method
,”
J. Biomech.
,
40
(
8
), pp.
1745
1753
.10.1016/j.jbiomech.2006.08.003
32.
Li
,
C.-J.
, and
Ulsoy
,
A. G.
,
1999
, “
High-Precision Measurement of Tool-Tip Displacement Using Strain Gauges in Precision Flexible Line Boring
,”
Mech. Syst. Signal Process.
,
13
(
4
), pp.
531
546
.10.1006/mssp.1999.1223
33.
Lee
,
D.-T.
, and
Schachter
,
B. J.
,
1980
, “
Two Algorithms for Constructing a Delaunay Triangulation
,”
Int. J. Comput. Inf. Sci.
,
9
(
3
), pp.
219
242
.10.1007/BF00977785
34.
Dalstra
,
M.
,
Huiskes
,
R.
, and
van Erning
,
L.
,
1995
, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
272
278
.10.1115/1.2794181
35.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
36.
Zhao
,
Z.
,
Li
,
Y.
,
Liu
,
C.
, and
Gao
,
J.
,
2020
, “
On-Line Part Deformation Prediction Based on Deep Learning
,”
J. Intell. Manuf.
,
31
(
3
), pp.
561
574
.10.1007/s10845-019-01465-0
You do not currently have access to this content.