Abstract

The thermal diffusivity of carbon fiber reinforced composite materials is dependent on fiber, matrix, and porosity volume fractions. Since the carbon fiber thermal conductivity is much greater than the epoxy resin matrix thermal conductivity, thermal diffusivity is a good indicator of the fiber volume fraction. In this study, through-the-thickness thermal diffusivity images were obtained nondestructively on carbon fiber reinforced composite plates, and the values varied from 0.0035 to 0.0062 cm2/s. The fiber and porosity volume fractions were measured destructively, and their values varied from 56.0 to 70.5% and from 0.9 to 7.2%, respectively. The destructive test data were used as a standard for comparison of three commonly used transverse equivalent thermal conductivity models: the Stacked Plate, the mixed flow Cylindrical Fiber model, and the Composite Circular Assemblage model. In these models, a porosity correction is also studied. There was very good agreement between the Composite Circular Assemblage and Cylindrical Fiber model when porosity levels were less than 2%. The porosity correction helped to reduce the chi-squared value by 24% in the Cylindrical Filament model. Finally, the potential is discussed to image fiber volume fraction nondestructively using the described thermal measurement system.

References

1.
Tai
,
H.
in
Journal of Composite Technology and Research
, Vol.
18
, No.
3
,
07
1996
, pp.
221
-
227
.
2.
Behrens
,
E.
in
Journal of Composite Materials
, Vol.
2
,
1968
, pp.
2
-
17
.
3.
Horvay
,
G.
,
Mani
,
R.
,
Veluswami
,
M.
, and
Zinsmeister
,
G.
in
Journal of Heat Transfer
,
08
1973
, pp.
309
-
316
.
4.
Charles
,
J. A.
and
Wilson
,
D. W.
,
Polymer Composites
, Vol.
2
, No.
3
,
07
1981
, pp.
105
-
111
.
5.
Fletcher
,
L. S.
in
Journal of Heat Transfer
, Vol.
110
,
11
1988
, pp.
1059
-
1070
.
6.
Han
,
L. S.
and
Cosner
,
A. A.
in
ASME Journal of Heat Transfer
, Vol.
103
,
1981
, pp.
387
-
392
.
7.
Automatic System Composite Analysis, AdTech System Research Inc., Automatic System Composite Analysis
,
1992
.
8.
Nahas
,
N. C.
,
Griffis
,
C. L.
, and
Couper
,
J. R.
, “
Thermal Conductivity of Two-Phase Systems
,”
University of Arkansas Experiment Station, Research Report
5,
04
1964
.
9.
Springer
,
G.
and
Tsai
,
W.
in
Journal of Composite Materials
, Vol.
1
,
1967
, pp.
166
-
173
.
10.
Rosen
,
B.
and
Hashin
,
Z.
in
Engineered Materials Handbook Composites
, Vol.
1
, ASM International,
1987
, pp.
187
-
192
.
11.
Chamis
,
C. C.
in
SAMPE Quarterly
,
04
1984
, pp.
14
-
23
.
12.
Lee
,
H. J.
and
Taylor
,
R. E.
in
Journal of Applied Physics
, Vol.
47
,
01
1976
, pp.
148
-
151
.
13.
Welch
,
C. S.
,
Heath
,
D. M.
, and
Winfree
,
W. P.
in
Journal of Applied Physics
, Vol.
61
,
02
1987
, pp.
895
-
898
.
14.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G.
in
Journal of Applied Physics
, Vol.
32
,
09
1961
, pp.
1679
-
1684
.
15.
Yamane
,
T.
,
Katayama
,
S.
,
Todoki
,
M.
, and
Hatta
,
I.
in
Journal of Applied Physics
, Vol.
80
,
10
1996
, pp.
4358
-
4365
.
16.
Johnston
,
P. H.
,
Winfree
,
W. P.
,
Long
,
E. R.
,
Kullerd
,
S. M.
,
Nathan
,
N.
, and
Partos
,
R. D.
in
Review of Progress in Quantitative Nondestructive Evaluation
,
1991
, pp.
1555
-
1562
.
17.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
in
Numerical Recipes in C
, Second Edition,
Cambridge University Press
,
New York
,
1992
, pp.
683
-
688
.
18.
Cilley
,
E.
,
Roylance
,
D.
, and
Schneider
,
N.
in
Composite Materials: Testing and Design (3rd Conference)
 ASTM STP 546,
1974
, pp.
237
-
249
.
This content is only available via PDF.
You do not currently have access to this content.