Abstract

Due to the advantages of ultra-high-power density, long cyclic life, and desirable safety, ultra-high-rate LiFePO4/graphite batteries (U-LIBs) are used as the energy storage system for electromagnetic launchers. However, the short calendar life of U-LIB limits its further application in the field of electromagnetic launch. In this study, the calendar life of commercial U-LIB is improved through the optimization design of anode materials and electrolytes. The calendar life is successfully improved without affecting the battery performances by appropriately increasing the particle size of graphite in the anode and properly reducing the proportion of dimethyl carbonate (DMC), which has low stability in the electrolyte. The average particle size of graphite is increased from 5 μm to 8 μm with a compaction density of 1.3 g cm−3 as the best option. The electrolyte formulation is optimized from 30% ethylene carbonate (EC), 60% DMC, and 10% ethyl methyl carbonate (EMC) to 30% EC, 50% DMC, and 20% EMC. After comprehensive optimization, the calendar life of commercial U-LIB was significantly improved at different temperatures and states of charge (SOCs). For example, the 1-month-storage capacity retention of U-LIB increased from 96.9% to 98% under the temperature of 45 °C at 50% SOC (meaning 35.5% decrease on capacity loss), and increased from 98.2% to 98.8% under the temperature of 25 °C at 100% SOC (33.3% decrease on capacity loss).

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
.
2.
Wu
,
F.
,
Maier
,
J.
, and
Yu
,
Y.
,
2020
, “
Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries
,”
Chem. Soc. Rev.
,
49
(
5
), pp.
1569
1614
.
3.
Kim
,
T.
,
Song
,
W.
,
Son
,
D. Y.
,
Ono
,
L. K.
, and
Qi
,
Y.
,
2019
, “
Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies
,”
J. Mater. Chem. A
,
7
(
7
), pp.
2942
2964
.
4.
Manthiram
,
A.
,
2017
, “
An Outlook on Lithium Ion Battery Technology
,”
ACS Central Science
,
3
(
10
), pp.
1063
1069
.
5.
Blomgren
,
G. E.
,
2017
, “
The Development and Future of Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
1
), p.
A5019
.
6.
Xu
,
J.
,
Cai
,
X.
,
Cai
,
S.
,
Shao
,
Y.
,
Hu
,
C.
,
Lu
,
S.
, and
Ding
,
S.
,
2023
, “
High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications
,”
Energy & Environmental Materials
,
6
(
5
), p.
e12450
.
7.
Min
,
X.
,
Xu
,
G.
,
Xie
,
B.
,
Guan
,
P.
,
Sun
,
M.
, and
Cui
,
G.
,
2022
, “
Challenges of Prelithiation Strategies for Next Generation High Energy Lithium-Ion Batteries
,”
Energy Storage Materials
,
47
, pp.
297
318
.
8.
Choi
,
J. W.
, and
Aurbach
,
D.
,
2016
, “
Promise and Reality of Post-Lithium-Ion Batteries With High Energy Densities
,”
Nature Reviews Materials
,
1
(
4
), p.
16013
.
9.
Eftekhari
,
A.
,
2017
, “
Lithium-Ion Batteries With High Rate Capabilities
,”
ACS Sustainable Chemistry&Engineering
,
5
(
4
), pp.
2799
2816
.
10.
Yuan
,
B.
,
Wen
,
K.
,
Chen
,
D.
,
Liu
,
Y.
,
Dong
,
Y.
,
Feng
,
C.
,
Han
,
Y.
, et al
,
2021
, “
Composite Separators for Robust High Rate Lithium Ion Batteries
,”
Adv. Funct. Mater.
,
31
(
32
), p.
2101420
.
11.
He
,
C.
,
Wu
,
S.
,
Zhao
,
N.
,
Shi
,
C.
,
Liu
,
E.
, and
Li
,
J.
,
2013
, “
Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material
,”
ACS Nano
,
7
(
5
), pp.
4459
4469
.
12.
Masias
,
A.
,
Marcicki
,
J.
, and
Paxton
,
W. A.
,
2021
, “
Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications
,”
ACS Energy Letters
,
6
(
2
), pp.
621
630
.
13.
Chen
,
S.
,
Dai
,
F.
, and
Cai
,
M.
,
2020
, “
Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications
,”
ACS Energy Letters
,
5
(
10
), pp.
3140
3151
.
14.
Zhou
,
R.
,
Lu
,
J.
,
Long
,
X.
,
Wu
,
Y.
,
Liu
,
L.
, and
Liu
,
Y.
,
2021
, “
Theoretical Model of Lithium Iron Phosphate Power Battery Under High-Rate Discharging for Electromagnetic Launch
,”
International Journal of Mechanical System Dynamics
,
1
(
2
), pp.
220
229
.
15.
Liu
,
L.
, and
Long
,
X.
,
2023
, “
Aging Mechanisms of Ultra-High-Rate Lithium-Ion Batteries for Electromagnetic Launch
,”
NANO
,
18
(
3
), p.
2350019
.
16.
Long
,
X.
,
Lu
,
J.
,
Wei
,
J.
, et al
,
2019
, “
Application on Lithium Batteries for Electromagnetic Launch
,”
Journal of National University of Defense Technology
,
41
(
4
), pp.
66
72
.
17.
Yuan
,
B.
,
Feng
,
Y.
,
Qiu
,
X.
,
He
,
Y.
,
Dong
,
L.
,
Zhong
,
S.
,
Liu
,
J.
, et al
,
2023
, “
A Safe Separator With Heat-Dispersing Channels for High-Rate Lithium-Ion Batteries
,”
Adv. Funct. Mater.
,
34
(
9
), p.
2308929
.
18.
Li
,
Y.
,
Wang
,
L.
,
Zhang
,
K.
,
Liang
,
F.
,
Yuan
,
M.
,
Zhang
,
H.
, and
Yao
,
Y
,
2021
, “
An Encapsulation of Phosphorus Doped Carbon Over LiFePO4 Prepared Under Vacuum Condition for Lithium-Ion Batteries
,”
Vacuum
,
184
, p.
109935
.
19.
An
,
C. S.
,
Zhang
,
B.
,
Tang
,
L. B.
,
Xiao
,
B.
, and
Zheng
,
J.-C.
,
2018
, “
Ultrahigh Rate and Long-Life Nano-LiFePO4 Cathode for Li-Ion Batteries
,”
Electrochim. Acta
,
283
, pp.
385
392
.
20.
Xu
,
G.
,
Li
,
F.
,
Tao
,
Z.
,
Wei
,
X.
,
Liu
,
Y.
,
Li
,
X.
,
Ren
,
Z.
,
Shen
,
G.
, and
Han
,
G.
,
2014
, “
Monodispersed LiFePO4@C Coreeshell Nanostructures for a High Power Li-Ion Battery Cathode
,”
J. Power Sources
,
246
, pp.
696
702
.
21.
Wang
,
X.
,
Li
,
X.
,
Sun
,
X.
,
Li
,
F.
,
Liu
,
Q.
,
Wang
,
Q.
, and
He
,
D.
,
2011
, “
Nanostructured NiO Electrode for High Rate Li-Ion Batteries
,”
J. Mater. Chem.
,
21
(
11
), pp.
3571
3573
.
22.
Zhao
,
Y.
,
Peng
,
L.
,
Liu
,
B.
, and
Yu
,
G.
,
2014
, “
Single-Crystalline LiFePO4 Nanosheets for High-Rate Li-Ion Batteries
,”
Nano Lett.
,
14
(
5
), pp.
2849
2853
.
23.
Shen
,
L.
,
Uchaker
,
E.
,
Zhang
,
X.
, and
Cao
,
G.
,
2012
, “
Hydrogenated Li4Ti5O12 Nanowire Arrays for High Rate Lithium Ion Batteries
,”
Adv. Mater.
,
24
(
48
), pp.
6502
6506
.
24.
Billaud
,
J.
,
Bouville
,
F.
,
Magrini
,
T.
,
Villevieille
,
C.
, and
Studart
,
A. R.
,
2016
, “
Magnetically Aligned Graphite Electrodes for High-Rate Performance Li-Ion Batteries
,”
Nature Energy
,
1
(
8
), p.
16097
.
25.
Sun
,
C.
,
Rajasekhara
,
S.
,
Goodenough
,
J. B.
, and
Zhou
,
F.
,
2011
, “
Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode
,”
J. Am. Chem. Soc.
,
133
(
7
), pp.
2132
2135
.
26.
Wang
,
X.
,
Feng
,
Z.
,
Hou
,
X.
,
Liu
,
L.
,
He
,
M.
,
He
,
X.
,
Huang
,
J.
, and
Wen
,
Z.
,
2020
, “
Fluorine Doped Carbon Coating of LiFePO4 as a Cathode Material for Lithium-Ion Batteries
,”
Chem. Eng. J.
,
379
, p.
122371
.
27.
Wang
,
X.
,
Chen
,
C.
,
Wu
,
S.
,
Zheng
,
H.
,
Chen
,
Y.
,
Liu
,
H.
,
Wu
,
Y.
, and
Duan
,
H.
,
2022
, “
High-Rate and Long-Life Au Nanorods/LiFePO4 Composite Cathode for Lithium-Ion Batteries
,”
Energy Technology
,
10
(
3
), p.
2100841
.
28.
Yan
,
X.
,
Yang
,
Y.
,
Li
,
C.
,
Liu
,
J.
,
Wang
,
J.
,
Xi
,
F.
,
Wang
,
T.
, and
He
,
W.
,
2022
, “
The Synthesis of LiFePO4/C With Polyaniline as Coated Carbon Source and Sucrose as Reducing Carbon Source
,”
Ionics
,
28
(
4
), pp.
1559
1571
.
29.
Guo
,
M.
,
Cao
,
Z.
,
Liu
,
Y.
,
Ni
,
Y
,
Chen
,
X.
,
Terrones
,
M.
, and
Wang
,
Y.
,
2023
, “
Preparation of Tough, Binder-Free, and Self-Supporting LiFePO4 Cathode by Using Mono-Dispersed Ultra-Long Single-Walled Carbon Nanotubes for High-Rate Performance Li-Ion Battery
,”
Advanced Science
,
10
(
13
), p.
2207355
.
30.
Longoni
,
G.
,
Panda
,
J. K.
,
Gagliani
,
L.
,
Brescia
,
R.
,
Manna
,
L.
,
Bonaccorso
,
F.
, and
Pellegrini
,
V.
,
2018
, “
In Situ LiFePO4 Nano-Particles Grown on Few-Layer Graphene Flakes as High-Power Cathode Nanohybrids for Lithium-Ion Batteries
,”
Nano Energy
,
51
, pp.
656
667
.
31.
Rui
,
X.
,
Zhao
,
X.
,
Lu
,
Z.
,
Tan
,
H.
,
Sim
,
D.
,
Hng
,
H. H.
,
Yazami
,
R.
,
Lim
,
T. M.
, and
Yan
,
Q.
,
2013
, “
Olivine-Type Nanosheets for Lithium Ion Battery Cathodes
,”
ACS Nano
,
7
(
6
), pp.
5637
5646
.
32.
Cheng
,
Q.
,
Yuge
,
R.
,
Nakahara
,
K.
,
Tamura
,
N.
, and
Miyamoto
,
S.
,
2015
, “
KOH Etched Graphite for Fast Chargeable Lithium-Ion Batteries
,”
J. Power Sources
,
284
, pp.
258
263
.
33.
Chen
,
K. H.
,
Namkoong
,
M. J.
,
Goel
,
V.
,
Yang
,
C.
,
Kazemiabnavi
,
S.
,
Mortuza
,
S. M.
,
Kazyak
,
E.
, et al
,
2020
, “
Efficient Fast-Charging of Lithium-Ion Batteries Enabled by Laser-Patterned Three-Dimensional Graphite Anode Architectures
,”
J. Power Sources
,
471
, p.
228475
.
34.
Han
,
Y. J.
,
Kim
,
J.
,
Yeo
,
J. S.
,
An
,
J. C.
,
Hong
,
I.-P.
,
Nakabayashi
,
K.
,
Miyawaki
,
J.
,
Jung
,
J-D.
, and
Yoon
,
S.-H.
,
2015
, “
Coating of Graphite Anode With Coal Tar Pitch as an Effective Precursor for Enhancing the Rate Performance in Li-Ion Batteries: Effects of Composition and Softening Points of Coal Tar Pitch
,”
Carbon
,
94
, pp.
432
438
.
35.
Yang
,
S.
,
Yamamoto
,
K.
,
Mei
,
X.
,
Sakuda
,
A.
,
Uchiyama
,
T.
,
Watanabe
,
T.
,
Takami
,
T.
,
Hayashi
,
A.
,
Tatsumisago
,
M.
, and
Uchimoto
,
Y.
,
2022
, “
High Rate Capability From a Graphite Anode Through Surface Modification With Lithium Iodide for All-Solid-State Batteries
,”
ACS Applied Energy Materials
,
5
(
1
), pp.
667
673
.
36.
Kim
,
D. S.
,
Kim
,
Y. E.
, and
Kim
,
H.
,
2019
, “
Improved Fast Charging Capability of Graphite Anodes via Amorphous Al2O3 Coating for High Power Lithium Ion Batteries
,”
J. Power Sources
,
422
, pp.
18
24
.
37.
Lee
,
H.
,
Hwang
,
S.
,
Kim
,
M.
,
Kwak
,
K.
,
Lee
,
J.
,
Han
,
Y.-K.
, and
Lee
,
H.
,
2020
, “
Why Does Dimethyl Carbonate Dissociate Li Salt Better Than Other Linear Carbonates? Critical Role of Polar Conformers
,”
J. Phys. Chem. Lett.
,
11
(
24
), pp.
10382
10387
.
38.
Zhou
,
Y.
,
Wu
,
J.
, and
Lemmon
,
E. W.
,
2011
, “
Thermodynamic Properties of Dimethyl Carbonate
,”
J. Phys. Chem. Ref. Data
,
40
(
4
), p.
043106
.
39.
Mahesh
,
M.
,
Bhaskar
,
D. V.
,
Jisha
,
R. K.
,
Krishan
,
R.
, and
Gnanadass
,
R.
,
2022
, “
Lifetime Estimation of Grid Connected LiFePO4 Battery Energy Storage Systems
,”
Electrical Engineering
,
104
(
1
), pp.
67
81
.
40.
Sui
,
X.
,
Swierczynski
,
M.
,
Teodorescu
,
R.
, and
Stroe
,
D.-I.
,
2021
, “
The Degradation Behavior of LiFePO4/C Batteries During Long-Term Calendar Aging
,”
Energies
,
14
(
6
), p.
1732
.
41.
Azkue
,
M.
,
Lucu
,
M.
,
Martinez-Laserna
,
E.
, and
Aizpuru
,
I.
,
2021
, “
Calendar Ageing Model for Li-Ion Batteries Using Transfer Learning Methods
,”
World Electric Vehicle Journal
,
12
(
3
), p.
145
.
You do not currently have access to this content.