During the operation of solid oxide fuel cells (SOFCs) the Ni base anode and/or Ni-mesh is in direct contact with the ferritic steel interconnect or the metallic substrate. For assuring long-term stack operation a diffusion barrier layer with high electronic conductivity may be needed to impede interdiffusion between the various components. A pre-oxidation layer on the ferritic steel turned out to be not viable as a barrier layer since a Ni-layer tends to dissociate the oxide scale. Therefore the potential of ceria as a diffusion barrier layer for the anode side of the SOFC was estimated. The barrier properties of a ceria coating between the Ni and the ferritic steel Crofer 22 APU were tested for 1000 h in at . Conductivity experiments were performed in the same atmosphere at different temperatures. After long-term exposures no indication of interdiffusion between Ni and ferritic steel could be detected, however, sputtered coatings on ferritic steel substrates showed significantly lower conductivities than bulk ceria samples because of void formation between the ceria and the oxide on the steel surface. The latter could be prevented by an intermediate copper layer, which resulted in overall area specific resistance values lower than after 100 h exposure at .
Skip Nav Destination
e-mail: j.froitzheim@fz-juelich.de
e-mail: l.niewolak@fz-juelich.de
e-mail: l.singheiser@fz-juelich.de
e-mail: j.quadakkers@fz-juelich.de
Article navigation
June 2010
This article was originally published in
Journal of Fuel Cell Science and Technology
Research Papers
Anode Side Diffusion Barrier Coating for Solid Oxide Fuel Cells Interconnects
J. Froitzheim,
e-mail: j.froitzheim@fz-juelich.de
J. Froitzheim
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germany
Search for other works by this author on:
L. Niewolak,
e-mail: l.niewolak@fz-juelich.de
L. Niewolak
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germany
Search for other works by this author on:
L. Singheiser,
e-mail: l.singheiser@fz-juelich.de
L. Singheiser
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germany
Search for other works by this author on:
W. J. Quadakkers
e-mail: j.quadakkers@fz-juelich.de
W. J. Quadakkers
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germany
Search for other works by this author on:
J. Froitzheim
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germanye-mail: j.froitzheim@fz-juelich.de
L. Niewolak
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germanye-mail: l.niewolak@fz-juelich.de
M. Brandner
L. Singheiser
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germanye-mail: l.singheiser@fz-juelich.de
W. J. Quadakkers
Forschungszentrum Jülich
, Institut für Energieforschung (IEF-2), 52425 Jülich, Germanye-mail: j.quadakkers@fz-juelich.de
J. Fuel Cell Sci. Technol. Jun 2010, 7(3): 031020 (7 pages)
Published Online: March 17, 2010
Article history
Received:
May 20, 2008
Revised:
November 12, 2008
Online:
March 17, 2010
Published:
March 17, 2010
Citation
Froitzheim, J., Niewolak, L., Brandner, M., Singheiser, L., and Quadakkers, W. J. (March 17, 2010). "Anode Side Diffusion Barrier Coating for Solid Oxide Fuel Cells Interconnects." ASME. J. Fuel Cell Sci. Technol. June 2010; 7(3): 031020. https://doi.org/10.1115/1.3182731
Download citation file:
Get Email Alerts
Cited By
Optimization of Thermal Non-Uniformity Challenges in Liquid-Cooled Lithium-Ion Battery Packs Using NSGA-II
J. Electrochem. En. Conv. Stor (November 2025)
In Situ Synthesis of Nano PtRuW/WC Hydrogen Evolution Reaction Catalyst for Acid Hydrogen Evolution by a Microwave Method
J. Electrochem. En. Conv. Stor (November 2025)
Intelligently Constructing Polyaniline/Nickel Hydroxide Core–Shell Nanoflowers as Anode for Flexible Electrode-Enhanced Lithium-/Sodium-Ion Batteries
J. Electrochem. En. Conv. Stor (November 2025)
State of Health Estimation Method for Lithium-Ion Batteries Based on Multifeature Fusion and BO-BiGRU Model
J. Electrochem. En. Conv. Stor (November 2025)
Related Articles
Nanoscale Gd-Doped CeO 2 Buffer Layer for a High Performance Solid Oxide Fuel Cell
J. Fuel Cell Sci. Technol (August,2011)
A Two-Dimensional Modeling Study of a Planar SOFC Using Actual Cell Testing Geometry and Operating Conditions
J. Fuel Cell Sci. Technol (February,2012)
Stainless Steel/Yttria Stabilized Zirconia Composite Supported Solid Oxide Fuel Cell
J. Fuel Cell Sci. Technol (October,2011)
Oxidation Behavior of Various Metallic Alloys for Solid Oxide Fuel Cell Interconnect
J. Fuel Cell Sci. Technol (August,2009)
Related Proceedings Papers
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Discussion of Parameters to Be Monitored
Consensus on Operating Practices for the Sampling and Monitoring of Feedwater and Boiler Water Chemistry in Modern Industrial Boilers (CRTD-81)
E110opt Fuel Cladding Corrosion under PWR Conditions
Zirconium in the Nuclear Industry: 20th International Symposium