Abstract

A reduced weakly-coupled thermo-mechanical model based on the proper generalized decomposition method was developed for the numerical analysis of power modules. The employed model reduction method enabled us to obtain, in a preliminary offline phase, the solution of the thermo-mechanical problem over a large range of design parameters, with much time saving compared to a classical (brute force) multi-resolution finite element method. In an online postprocessing phase, the power module lifetime, modeled with a strain-life law, was then computed in a straightforward manner by rapidly evaluating the solution for any value of the parameters. Sensitivity analysis was conducted to select parameters values leading to acceptable module lifetimes with respect to given criteria. A robust design study was also performed to illustrate the performance of the proposed approach.

References

1.
Tran
,
S.
,
Khatir
,
Z.
,
Lallemand
,
R.
,
Ibrahim
,
A.
,
Ousten
,
J.
,
Ewanchuk
,
J.
, and
Mollov
,
S. V.
,
2019
, “
Constant ΔTj Power Cycling Strategy in dc Mode for Top-Metal and Bond-Wire Contacts Degradation Investigations
,”
IEEE Trans. Power Electron.
,
34
(
3
), pp.
2171
2180
.10.1109/TPEL.2018.2847234
2.
Choi
,
U.-M.
,
Joergensen
,
S.
, and
Blaabjerg
,
F.
,
2016
, “
Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules
,”
IEEE Trans. Power Electron.
,
31
(
12
), pp.
1
8386
.10.1109/TPEL.2016.2521899
3.
Deplanque
,
S.
,
Nuchter
,
W.
,
Wunderle
,
B.
,
Schacht
,
R.
, and
Michel
,
B.
,
2006
, “
Lifetime Prediction of SnPb and SnAgCu Solder Joints of Chips on Copper Substrate Based on Crack Propagation FE-Analysis
,”
EuroSime 2006-7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems
, Como, Italy, Apr. 24–26, pp.
1
8
.10.1109/ESIME.2006.1643976
4.
Bayerer
,
R.
,
Herrmann
,
T.
,
Licht
,
T.
,
Lutz
,
J.
, and
Feller
,
M.
,
2008
, “
Model for Power Cycling Lifetime of Igbt Modules - Various Factors Influencing Lifetime
,”
5th International Conference on Integrated Power Electronics Systems,
Nuremberg, Germany, Mar. 11–13, pp.
1
6
.https://ieeexplore.ieee.org/document/5755669
5.
Smet
,
V.
,
Forest
,
F.
,
Huselstein
,
J.
,
Richardeau
,
F.
,
Khatir
,
Z.
,
Lefebvre
,
S.
, and
Berkani
,
M.
,
2011
, “
Ageing and Failure Modes of Igbt Modules in High-Temperature Power Cycling
,”
IEEE Trans. Ind. Electron.
,
58
(
10
), pp.
4931
4941
.10.1109/TIE.2011.2114313
6.
Kovacevic-Badstuebner
,
I. F.
,
Kolar
,
J. W.
,
Schilling
,
U.
,
Chung
,
H.
,
Wang
,
H.
,
Blaabjerg
,
F.
, and
Pecht
,
M.
,
2015
, “
Modelling for the Lifetime Prediction of Power Semiconductor Modules
,” In Reliability of Power Electronic Converter Systems,
IET Publishing
, London, UK, pp.
103
140
, Chap. 5.10.1049/PBPO080E_ch5
7.
Sasaki
,
K.
,
Iwasa
,
N.
,
Kurosu
,
T.
,
Saito
,
K.
,
Koike
,
Y.
,
Kamita
,
Y.
, and
Toyoda
,
Y.
,
2008
, “
Thermal and Structural Simulation Techniques for Estimating Fatigue Life of an IGBT Module
,”
2008 20th International Symposium on Power Semiconductor Devices and IC's,
Orlando, FL, May 18–22, pp.
181
184
.10.1109/ISPSD.2008.4538928
8.
Yang
,
L.
,
Agyakwa
,
P.
, and
Johnson
,
M.
,
2011
, “
A Time-Domain Physics-of-Failure Model for the Lifetime Prediction of Wire Bond Interconnects
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1882
1886
.10.1016/j.microrel.2011.07.052
9.
Riedel
,
G. J.
,
Schmidt
,
R.
,
Liu
,
C. R.
,
Beyer
,
H.
, and
Alaperä
,
I.
,
2012
, “
Reliability of Large Area Solder Joints Within Igbt Modules: Numerical Modeling and Experimental Results
,”
2012 7th International Conference on Integrated Power Electronics Systems
(
CIPS
), Nuremberg, Germany, Mar. 6–8, pp.
1
6
.https://ieeexplore.ieee.org/abstract/document/6170637?casa_token=eF7Z3C6sQjUAAAAA:RyWQL1zmtQlm1KlX99vu8jQr5ctfngTXs93DqYjrNWQMzGu__gVobWv49v5JFQ6MAjUHzqiW5mLkA
10.
Nazar
,
M.
,
Ibrahim
,
A.
,
Khatir
,
Z.
,
Degrenne
,
N.
, and
Al Masry
,
Z.
,
2020
, “
Remaining Useful Lifetime Estimation for Electronic Power Modules Using an Analytical Degradation Model
,”
PHM Soc. Eur. Conf.
,
5
, pp.
10
10
.https://hal.archives-ouvertes.fr/hal-03152503/
11.
Quintero
,
P. O.
, and
McCluskey
,
F. P.
,
2011
, “
Temperature Cycling Reliability of High-Temperature Lead-Free Die-Attach Technologies
,”
IEEE Trans. Device Mater. Reliab.
,
11
(
4
), pp.
531
539
.10.1109/TDMR.2011.2140114
12.
Dornic
,
N.
,
Khatir
,
Z.
,
Tran
,
S. H.
,
Ibrahim
,
A.
,
Lallemand
,
R.
,
Ousten
,
J.
,
Ewanchuk
,
J.
, and
Mollov
,
S. V.
,
2019
, “
Stress-Based Model for Lifetime Estimation of Bond Wire Contacts Using Power Cycling Tests and Finite-Element Modeling
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
7
(
3
), pp.
1659
1667
.10.1109/JESTPE.2019.2918941
13.
Lee
,
W.
,
Nguyen
,
L.
, and
Selvaduray
,
G.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.10.1016/S0026-2714(99)00061-X
14.
Steinhorst
,
P.
,
Poller
,
T.
, and
Lutz
,
J.
,
2013
, “
Approach of a Physically Based Lifetime Model for Solder Layers in Power Modules
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1199
1202
.10.1016/j.microrel.2013.07.094
15.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
50th Electronic Components and Technology Conference (Cat. No.00CH37070)
, Las Vegas, NV, May 21–24, pp.
1048
1058
.10.1109/ECTC.2000.853299
16.
Chinesta
,
F.
,
Huerta
,
A.
,
Rozza
,
G.
, and
Willcox
,
K.
,
2017
, “
Model Order Reduction Methods
,”
Encyclopedia of Computational Mechanics
, 2nd ed.,
Wiley
, Hoboken, NJ.10.1002/9781119176817.ecm2110
17.
Quarteroni
,
A.
, and
Rozza
,
G.
,
2014
,
Reduced Order Methods for Modeling and Computational Reduction
, 9th ed.,
Springer
, Berlin.https://link.springer.com/book/10.1007/978-3-319-02090-7?noAccess=true
18.
Maday
,
Y.
, and
Rønquist
,
E. M.
,
2002
, “
A Reduced-Basis Element Method
,”
C. R. Mathematique
,
335
(
2
), pp.
195
200
.10.1016/S1631-073X(02)02427-5
19.
Rozza
,
G.
,
Huynh
,
D. B. P.
, and
Patera
,
A. T.
,
2007
, “
Reduced Basis Approximation and a Posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations
,”
Arch. Comput. Methods Eng.
,
15
(
3
), pp.
1
47
.10.1007/BF03024948
20.
Pearson
,
K.
,
1901
, “
Liii. on Lines and Planes of Closest Fit to Systems of Points in Space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.10.1080/14786440109462720
21.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci.
,
78
(
7
), pp.
808
817
.https://www.jstor.org/stable/24103957
22.
Klema
,
V. C.
, and
Laub
,
A. J.
,
1980
, “
The Singular Value Decomposition: Its Computation and Some Applications
,”
IEEE Trans. Autom. Control
,
25
(
2
), pp.
164
176
.10.1109/TAC.1980.1102314
23.
Wold
,
S.
,
Esbensen
,
K.
, and
Geladi
,
P.
,
1987
, “
Principal Component Analysis
,”
Chemom. Intell. Lab. Syst.
, 2(1–3), pp.
37
52
.10.1016/0169-7439(87)80084-9
24.
Newman
,
A. J.
,
1996
, “
Model Reduction Via the Karhunen-Loeve Expansion Part I: An Exposition Model Reduction Via the Karhunen-Loeve Expansion
,”
Institute for Systems Research
, College Park, MD, Technical Report 96–32.https://drum.lib.umd.edu/bitstream/handle/1903/5751/T R_96-32.pdf?isAllowed=y&sequence=1
25.
Chinesta
,
F.
,
Ladeveze
,
P.
, and
Cueto
,
E.
,
2011
, “
A Short Review on Model Order Reduction Based on Proper Generalized Decomposition
,”
Arch. Comput. Methods Eng.
,
18
(
4
), pp.
395
404
.10.1007/s11831-011-9064-7
26.
Chinesta
,
F.
,
Keunings
,
R.
, and
Leygue
,
A.
,
2013
,
The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer
,
Springer Science & Business Media
, Berlin.https://link.springer.com/book/10.1007/978-3-319-02865-1
27.
Henneron
,
T.
, and
Clenet
,
S.
,
2016
, “
Application of the Pgd and Deim to Solve a 3D Non-Linear Magnetostatic Problem Coupled With the Circuit Equations
,”
IEEE Trans. Magnetics
,
52
(
3
), pp.
1
4
.10.1109/TMAG.2015.2487539
28.
Larion
,
Y.
,
Zlotnik
,
S.
,
Massart
,
T. J.
, and
Díez
,
P.
,
2020
, “
Building a Certified Reduced Basis for Coupled Thermo-Hydro-Mechanical Systems With Goal-Oriented Error Estimation
,”
Comput. Mech.
,
66
(
3
), pp.
559
573
.10.1007/s00466-020-01865-7
29.
Qin
,
Z.
,
Talleb
,
H.
, and
Ren
,
Z.
,
2016
, “
A Proper Generalized Decomposition-Based Solver for Nonlinear Magnetothermal Problems
,”
IEEE Trans. Magnetics
,
52
(
2
), pp.
1
9
.10.1109/TMAG.2015.2492462
30.
Hernández-Becerro
,
P.
,
Spescha
,
D.
, and
Wegener
,
K.
,
2021
, “
Model Order Reduction of Thermo-Mechanical Models With Parametric Convective Boundary Conditions: Focus on Machine Tools
,”
Comput. Mech.
,
67
(
1
), pp.
167
184
.10.1007/s00466-020-01926-x
31.
Ryckelynck
,
D.
,
Chinesta
,
F.
,
Cueto
,
E.
, and
Ammar
,
A.
,
2006
, “
On the a Priori Model Reduction: Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
13
(
1
), pp.
91
128
.10.1007/BF02905932
32.
Musallam
,
M.
, and
Johnson
,
C. M.
,
2010
, “
Real-Time Compact Thermal Models for Health Management of Power Electronics
,”
IEEE Trans. Power Electron.
,
25
(
6
), pp.
1416
1425
.10.1109/TPEL.2010.2040634
33.
Du
,
B.
,
Hudgins
,
J. L.
,
Santi
,
E.
,
Bryant
,
A. T.
,
Palmer
,
P. R.
, and
Mantooth
,
H. A.
,
2009
, “
Transient Electrothermal Simulation of Power Semiconductor Devices
,”
IEEE Trans. Power Electronics
,
25
(
1
), pp.
237
248
.10.1109/TPEL.2009.2029105
34.
Swan
,
I.
,
Bryant
,
A.
,
Mawby
,
P. A.
,
Ueta
,
T.
,
Nishijima
,
T.
, and
Hamada
,
K.
,
2012
, “
A Fast Loss and Temperature Simulation Method for Power Converters, Part II: 3-D Thermal Model of Power Module
,”
IEEE Trans. Power Electron.
,
27
(
1
), pp.
258
268
.10.1109/TPEL.2011.2148730
35.
Jiang
,
M.
,
Fu
,
G.
,
Leng
,
H.
,
Wan
,
B.
, and
Cheng
,
Y.
,
2018
, “
Method to Predict Lifetime of Igbt Under Power Cycling Based-on Fast Electro-Thermo-Mechanical Model
,” 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Toulouse, France, 2018, pp.
1
6
.10.1109/EuroSimE.2018.8369921
36.
van der Broeck
,
C. H.
,
Ruppert
,
L. A.
,
Hinz
,
A.
,
Conrad
,
M.
, and
De Doncker
,
R. W.
,
2018
, “
Spatial Electro-Thermal Modeling and Simulation of Power Electronic Modules
,”
IEEE Trans. Ind. Appl.
,
54
(
1
), pp.
404
415
.10.1109/TIA.2017.2757898
37.
Entzminger
,
C.
,
Qiao
,
W.
,
Qu
,
L.
, and
Hudgins
,
J. L.
,
2019
, “
A High-Accuracy, Low-Order Thermal Model of Sic Mosfet Power Modules Extracted From Finite Element Analysis Via Model Order Reduction
,” 2019 IEEE Energy Conversion Congress and Exposition (
ECCE
), Baltimore, MD, Sept. 29–Oct. 3, pp.
4950
4954
.10.1109/ECCE.2019.8912839
38.
Da Silva
,
F.
,
2015
, “
Méthodologies de Réduction de Modèles Multiphysiques Pour la Conception et la Commande D'une Chaîne de Traction Électrique
,”
Ph.D. thesis
,
Université Paris-Saclay
, Gif-sur-Yvette, France.https://tel.archives-ouvertes.fr/tel-01275878
39.
Bhattacharyya
,
M.
,
Fau
,
A.
,
Nackenhorst
,
U.
,
Néron
,
D.
, and
Ladevèze
,
P.
,
2018
, “
A Latin-Based Model Reduction Approach for the Simulation of Cycling Damage
,”
Comput. Mech.
,
62
(
4
), pp.
725
743
.10.1007/s00466-017-1523-z
40.
Ladevèze
,
P.
,
Passieux
,
J.-C.
, and
Néron
,
D.
,
2010
, “
The Latin Multiscale Computational Method and the Proper Generalized Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
21–22
), pp.
1287
1296
.10.1016/j.cma.2009.06.023
41.
Vitse
,
M.
,
Néron
,
D.
, and
Boucard
,
P.-A.
,
2019
, “
Dealing With a Nonlinear Material Behavior and Its Variability Through Pgd Models: Application to Reinforced Concrete Structures
,”
Finite Elem. Anal. Des.
,
153
, pp.
22
37
.10.1016/j.finel.2018.05.006
42.
Néron
,
D.
, and
Ladevèze
,
P.
,
2010
, “
Proper Generalized Decomposition for Multiscale and Multiphysics Problems
,”
Arch. Comput. Methods Eng.
,
17
(
4
), pp.
351
372
.10.1007/s11831-010-9053-2
43.
Ammar
,
A.
,
Huerta
,
A.
,
Chinesta
,
F.
,
Cueto
,
E.
, and
Leygue
,
A.
,
2014
, “
Parametric Solutions Involving Geometry: A Step Towards Efficient Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
178
193
.10.1016/j.cma.2013.09.003
44.
Zlotnik
,
S.
,
Díez
,
P.
,
Modesto
,
D.
, and
Huerta
,
A.
,
2015
, “
Proper Generalized Decomposition of a Geometrically Parametrized Heat Problem With Geophysical Applications
,”
Int. J. Numer. Methods Eng.
,
103
(
10
), pp.
737
758
.10.1002/nme.4909
45.
Chamoin
,
L.
,
Allier
,
P. E.
, and
Marchand
,
B.
,
2016
, “
Synergies Between the Constitutive Relation Error Concept and Pgd Model Reduction for Simplified v&v Procedures
,”
Adv. Model. Simul. Eng. Sci.
,
3
(
1
), p.
12
.10.1186/s40323-016-0073-9
46.
Garikapati
,
H.
,
Zlotnik
,
S.
,
Díez
,
P.
,
Verhoosel
,
C. V.
, and
van Brummelen
,
E. H.
,
2020
, “
A Proper Generalized Decomposition (PGD) Approach to Crack Propagation in Brittle Materials: With Application to Random Field Material Properties
,”
Comput. Mech.
,
65
(
2
), pp.
451
473
.10.1007/s00466-019-01778-0
47.
Chamoin
,
L.
, and
Thai
,
H.
,
2019
, “
Certified Real-Time Shape Optimization Using Isogeometric Analysis, Pgd Model Reduction, and a Posteriori Error Estimation
,”
Int. J. Numer. Methods Eng.
,
119
(
3
), pp.
151
176
.10.1002/nme.6045
48.
Zou
,
X.
,
Conti
,
M.
,
Díez
,
P.
, and
Auricchio
,
F.
,
2018
, “
A Nonintrusive Proper Generalized Decomposition Scheme With Application in Biomechanics
,”
Int. J. Numer. Methods Eng.
,
113
(
2
), pp.
230
251
.10.1002/nme.5610
49.
Ammar
,
A.
,
Chinesta
,
F.
,
Diez
,
P.
, and
Huerta
,
A.
,
2010
, “
An Error Estimator for Separated Representations of Highly Multidimensional Models
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25–28
), pp.
1872
1880
.10.1016/j.cma.2010.02.012
50.
Ladeveze
,
P.
, and
Chamoin
,
L.
,
2011
, “
On the Verification of Model Reduction Methods Based on the Proper Generalized Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
23–24
), pp.
2032
2047
.10.1016/j.cma.2011.02.019
51.
Chamoin
,
L.
,
Pled
,
F.
,
Allier
,
P.-E.
, and
Ladevèze
,
P.
,
2017
, “
A Posteriori Error Estimation and Adaptive Strategy for Pgd Model Reduction Applied to Parametrized Linear Parabolic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
327
, pp.
118
146
.10.1016/j.cma.2017.08.047
52.
Guédé
,
Z.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2007
, “
Life-Time Reliability Based Assessment of Structures Submitted to Thermal Fatigue
,”
Int. J. Fatigue
,
29
(
7
), pp.
1359
1373
.10.1016/j.ijfatigue.2006.10.021
53.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
You do not currently have access to this content.