Abstract

In order to reduce energy consumption and related CO2 emissions, waste heat recovery is considered a viable opportunity in several economic sectors, with a focus on industry and transportation. Among different proposed technologies, thermodynamic cycles using suitable organic working fluids seem to be promising options, and the possibility of combining two different cycles improves the final recovered energy. In this paper, a combination of Brayton and Rankine cycles is proposed: the upper cycle has supercritical carbon dioxide (sCO2) as its working fluid, while the bottomed Rankine section is realized by an organic fluid (organic Rankine cycle (ORC)). This combined unit is applied to recover the exhaust energy from the flue gases of an internal combustion engine (ICE) for the transportation sector. The sCO2 Brayton cycle is directly facing the exhaust gases, and it should dispose of a certain amount of energy at lower pressure, which can be further recovered by the ORC unit. A specific mathematical model has been developed, which uses experimental engine data to estimate a realistic final recoverable energy. The model is able to evaluate the performance of each recovery subsection, highlighting interactions and possible trade-offs between them. Hence, the combined system can be optimized from a global point of view, identifying the most influential operating parameters and also considering a regeneration stage in the ORC unit.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhang
,
Q.
,
Dong
,
J.
,
Chen
,
H.
,
Feng
,
F.
,
Xu
,
G.
,
Wang
,
X.
, and
Liu
,
T.
,
2024
, “
Dynamic Characteristics and Economic Analysis of a Coal-Fired Power Plant Integrated With Molten Salt Thermal Energy Storage for Improving Peaking Capacity
,”
Energy
,
290
, p.
130132
.
2.
Yang
,
D.
,
Li
,
S.
, and
He
,
S.
,
2024
, “
Zero/Negative Carbon Emission Coal and Biomass Staged Co-Gasification Power Generation System via Biomass Heating
,”
Appl. Energy
,
357
, p.
122469
.
3.
Keramidas
,
K.
,
Mima
,
S.
, and
Bidaud
,
A.
,
2024
, “
Opportunities and Roadblocks in the Decarbonisation of the Global Steel Sector: A Demand and Production Modelling Approach
,”
Energy Clim. Change
,
5
, p.
100121
.
4.
Miró
,
L.
,
McKenna
,
R.
,
Jäger
,
T.
, and
Cabeza
,
L. F.
,
2018
, “
Estimating the Industrial Waste Heat Recovery Potential Based on CO2 Emissions in the European Non-Metallic Mineral Industry
,”
Energy Effic.
,
11
(
2
), pp.
427
443
.
5.
Thekdi
,
A. C.
, and
Nimbalkar
,
S. U.
, “
Industrial Waste Heat Recovery: Potential Applications, Available Technologies and Crosscutting R&D Opportunities
,” ORNL/TM-2014/622.
6.
Saha
,
B. K.
,
Chakraborty
,
B.
, and
Dutta
,
R.
,
2020
, “
Estimation of Waste Heat and Its Recovery Potential From Energy-Intensive Industries
,”
Clean Technol. Environ. Policy
,
22
(
9
), pp.
1795
1814
.
7.
Nowicki
,
C.
, and
Gosselin
,
L.
,
2012
, “
An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry
,”
JOM
,
64
(
8
), pp.
990
996
.
8.
Schwarzmayr
,
P.
,
Birkelbach
,
F.
,
Walter
,
H.
,
Javernik
,
F.
,
Schwaiger
,
M.
, and
Hofmann
,
R.
,
2024
, “
Packed Bed Thermal Energy Storage for Waste Heat Recovery in the Iron and Steel Industry: A Cold Model Study on Powder Hold-Up and Pressure Drop
,”
J. Energy Storage
,
75
, p.
109735
.
9.
Zhu
,
C.
,
Wang
,
M.
,
Guo
,
M.
,
Deng
,
J.
,
Du
,
Q.
,
Wei
,
W.
,
Zhang
,
Y.
, and
Ashraf Talesh
,
S. S.
,
2024
, “
Optimizing Solar-Driven Multi-Generation Systems: A Cascade Heat Recovery Approach for Power, Cooling, and Freshwater Production
,”
Appl. Therm. Eng.
,
240
, p.
122214
.
10.
Han
,
T.
,
Wang
,
C.
,
Zhu
,
C.
, and
Che
,
D.
,
2018
, “
Optimization of Waste Heat Recovery Power Generation System for Cement Plant by Combining Pinch and Exergy Analysis Methods
,”
Appl. Therm. Eng.
,
140
, pp.
334
340
.
11.
Urdaneta-B
,
A. H.
, and
Schmidt
,
P. S.
,
1980
, “
Thermodynamic and Economic Analysis of Heat Pumps for Energy Recovery in Industrial Processes
,”
ASME J. Energy Resour. Technol.
,
102
(
3
), pp.
173
180
.
12.
Wang
,
M.
,
Deng
,
C.
,
Wang
,
Y.
, and
Feng
,
X.
,
2020
, “
Exergoeconomic Performance Comparison, Selection and Integration of Industrial Heat Pumps for Low Grade Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112532
.
13.
Singh
,
S. K.
,
Kaushik
,
S. C.
,
Tyagi
,
V. V.
, and
Tyagi
,
S. K.
,
2022
, “
Experimental and Computational Investigation of Waste Heat Recovery From Combustion Device for Household Purposes
,”
Int. J. Energy Environ. Eng.
,
13
(
1
), pp.
353
364
.
14.
Zabihi Tari
,
A. H.
,
Khosravi
,
M.
,
Maleki Dastjerdi
,
S.
,
Khoshnevisan
,
A.
, and
Ahmadi
,
P.
,
2023
, “
Multi Objectives Optimization and Transient Analysis of an Off-Grid Building With Water Desalination and Waste Heat Recovery Units
,”
Sustain. Energy Technol. Assess.
,
59
, p.
103406
.
15.
Fatigati
,
F.
,
Vittorini
,
D.
,
Coletta
,
A.
, and
Cipollone
,
R.
,
2022
, “
Assessment of the Differential Impact of Scroll and Sliding Vane Rotary Expander Permeability on the Energy Performance of a Small-Scale Solar-ORC Unit
,”
Energy Convers. Manage.
,
269
, p.
116169
.
16.
Liao
,
J.
,
Xie
,
H.
,
Wang
,
J.
,
Sun
,
L.
,
Long
,
X.
,
Li
,
C.
,
Gao
,
T.
, and
Xia
,
E.
,
2024
, “
Effect of Operating Conditions on the Output Performance of a Compact TEG for Low-Grade Geothermal Energy Utilization
,”
Appl. Therm. Eng.
,
236
, p.
121878
.
17.
García
,
D.
,
Suárez
,
M.-J.
,
Blanco
,
E.
, and
Prieto
,
J.-I.
,
2022
, “
Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications
,”
Sustainability
,
14
(
24
), p.
16488
.
18.
Morrone
,
P.
,
Algieri
,
A.
,
Castiglione
,
T.
,
Perrone
,
D.
, and
Bova
,
S.
,
2018
, “
Investigation of Integrated Organic Rankine Cycles and Wind Turbines for Micro-Scale Applications
,”
Energy Procedia
,
148
, pp.
986
993
.
19.
Fatigati
,
F.
,
Vittorini
,
D.
,
Di Bartolomeo
,
M.
, and
Cipollone
,
R.
,
2023
, “
Experimental and Theoretical Analysis of a Micro-Cogenerative Solar ORC-Based Unit Equipped With a Variable Speed Sliding Rotary Vane Expander
,”
Energy Convers. Manage.: X
,
20
, p.
100428
.
20.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
21.
Stock
,
J.
,
Arjuna
,
F.
,
Xhonneux
,
A.
, and
Müller
,
D.
,
2023
, “
Modelling of Waste Heat Integration Into an Existing District Heating Network Operating at Different Supply Temperatures
,”
Smart Energy
,
10
, p.
100104
.
22.
Perrone
,
D.
,
Castiglione
,
T.
,
Morrone
,
P.
,
Pantano
,
F.
, and
Bova
,
S.
,
2023
, “
Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification
,”
Energies
,
16
(
19
), p.
6911
.
23.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
24.
Edwards
,
K.
,
Wagner
,
R.
, and
Briggs
,
T.
,
2010
, “
Investigating Potential Light-Duty Efficiency Improvements Through Simulation of Turbo-Compounding and Waste-Heat Recovery Systems
,” SAE Technical Paper 2010-01-2209.
25.
Lion
,
S.
,
Vlaskos
,
I.
, and
Taccani
,
R.
,
2020
, “
A Review of Emissions Reduction Technologies for Low and Medium Speed Marine Diesel Engines and Their Potential for Waste Heat Recovery
,”
Energy Convers. Manage.
,
207
, p.
112553
.
26.
Di Battista
,
D.
,
Cipollone
,
R.
, and
Carapellucci
,
R.
,
2019
, “
Inverted Brayton Cycle as an Option for Waste Energy Recovery in Turbocharged Diesel Engine
,”
SAE Technical Papers
,
2019
, p.
0060
.
27.
Aghaali
,
H.
, and
Ångström
,
H.-E.
,
2015
, “
A Review of Turbocompounding as a Waste Heat Recovery System for Internal Combustion Engines
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
813
824
.
28.
Risseh
,
A.
,
Nee
,
H.
,
Erlandsson
,
O.
,
Brinkfeldt
,
K.
,
Contet
,
A.
,
Frobenius lng
,
F.
,
Gaiser
,
G.
, et al
,
2017
, “
Design of a Thermoelectric Generator for Waste Heat Recovery Application on a Drivable Heavy Duty Vehicle
,”
SAE Int. J. Commer. Veh.
,
10
(
1
), pp.
26
44
.
29.
Iniesta
,
C.
,
Olazagoitia
,
J. L.
,
Vinolas
,
J.
, and
Gros
,
J.
,
2020
, “
New Method to Analyse and Optimise Thermoacoustic Power Generators for the Recovery of Residual Energy
,”
Alexandria Eng. J.
,
59
(
5
), pp.
3907
3917
.
30.
Burnete
,
N. V.
,
Mariasiu
,
F.
,
Depcik
,
C.
,
Barabas
,
I.
, and
Moldovanu
,
D.
,
2022
, “
Review of Thermoelectric Generation for Internal Combustion Engine Waste Heat Recovery
,”
Prog. Energy Combust. Sci.
,
91
, p.
101009
.
31.
Nollet
,
A. R.
, and
Greeley
,
R. H.
,
1983
, “
Startup and Shakedown of Albany New York Solid Waste Energy Recovery System
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
401
406
.
32.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
223
231
.
33.
Chowdhury
,
A. S.
, and
Ehsan
,
M. M.
,
2023
, “
A Critical Overview of Working Fluids in Organic Rankine, Supercritical Rankine, and Supercritical Brayton Cycles Under Various Heat Grade Sources
,”
Int. J. Thermofluids
,
20
, p.
100426
.
34.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.
35.
Kumar
,
A.
, and
Rakshit
,
D.
,
2021
, “
A Critical Review on Waste Heat Recovery Utilization With Special Focus on Organic Rankine Cycle Applications
,”
Clean. Eng. Technol.
,
5
, p.
100292
.
36.
Duarte-Forero
,
J.
,
Obregón-Quiñones
,
L.
, and
Valencia-Ochoa
,
G.
,
2021
, “
Comparative Analysis of Intelligence Optimization Algorithms in the Thermo-Economic Performance of an Energy Recovery System Based on Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112101
.
37.
Loni
,
R.
,
Najafi
,
G.
,
Bellos
,
E.
,
Rajaee
,
F.
,
Said
,
Z.
, and
Mazlan
,
M.
,
2021
, “
A Review of Industrial Waste Heat Recovery System for Power Generation With Organic Rankine Cycle: Recent Challenges and Future Outlook
,”
J. Cleaner Prod.
,
287
, p.
125070
.
38.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2019
, “
A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-Duty Diesel Engine Applications
,”
Renewable Sustainable Energy Rev.
,
107
, pp.
145
170
.
39.
Ottaviano
,
S.
,
Poletto
,
C.
,
De Pascale
,
A.
, and
Bianchi
,
M.
,
2511
, “
Experimental Analysis of Partial Evaporation Micro-ORC for Low-Temperature Heat Recovery 2023
,”
J. Phys.: Conf. Ser.
,
2511
(
1
), p.
012015
.
40.
Fatigati
,
F.
,
Coletta
,
A.
,
Di Bartolomeo
,
M.
, and
Cipollone
,
R.
,
2024
, “
The Dynamic Behaviour of ORC-Based Power Units Fed by Exhaust Gases of Internal Combustion Engines in Mobile Applications
,”
Appl. Therm. Eng.
,
240
, p.
122215
.
41.
Talluri
,
L.
,
Dumont
,
O.
,
Manfrida
,
G.
,
Lemort
,
V.
, and
Fiaschi
,
D.
,
2020
, “
Experimental Investigation of an Organic Rankine Cycle Tesla Turbine Working With R1233zd(E)
,”
Appl. Therm. Eng.
,
174
, p.
115293
.
42.
Di Battista
,
D.
,
Di Bartolomeo
,
M.
, and
Cipollone
,
R.
,
2022
, “
Full Energy Recovery From Exhaust Gases in a Turbocharged Diesel Engine
,”
Energy Convers. Manage.
,
271
, p.
116280
.
43.
Ibrahim Almohana
,
A.
,
Fahad Almojil
,
S.
,
Fahmi Alali
,
A.
,
Anqi
,
A. E.
,
Rajhi
,
A. A.
,
Alamri
,
S.
,
Dhahad
,
H. A.
,
Najat Ahmed
,
A.
, and
Mohamed
,
A.
,
2022
, “
Mathematical Simulation and Optimization of a Waste Energy Recovery for an Internal Combustion Engine Integrated With ScCO2 Cycle and Modified Kalina Cycle
,”
Sustain. Energy Technol. Assess.
,
53
, p.
102650
.
44.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
45.
Wright
,
S. A.
,
Radel
,
R. F.
, and
Fuller
,
R.
,
2010
, “
Engineering Performance of Supercritical CO2 Brayton Cycles
,”
International Congress on Advances in Nuclear Power Plants 2010, ICAPP 2010
,
San Diego, CA
,
June 13–17
, Vol. 1, pp.
400
408
.
46.
Chen
,
J.
,
Liu
,
L.
,
Liao
,
G.
,
Zhang
,
F.
,
Jiaqiang
,
E.
, and
Tan
,
S.
,
2023
, “
Design and Off-Design Performance Analysis of Supercritical Carbon Dioxide Brayton Cycles for Gas Turbine Waste Heat Recovery
,”
Appl. Therm. Eng.
,
235
, p.
121295
.
47.
Manente
,
G.
, and
Fortuna
,
F. M.
,
2019
, “
Supercritical CO2 Power Cycles for Waste Heat Recovery: A Systematic Comparison Between Traditional and Novel Layouts With Dual Expansion
,”
Energy Convers. Manag.
,
197
, p.
111777
.
48.
Tooli
,
A.
,
Fallah
,
M.
, and
Mosaffa
,
A. H.
,
2023
, “
A Comparative Study on the Integration of Different Types of Supercritical CO2 With ORC Using High-Temperature Heat Source From Energy, Exergy, and Exergoeconomic (3E) Viewpoint
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
7
), p.
366
.
49.
Khan
,
M. N.
,
Zoghi
,
M.
,
Habibi
,
H.
,
Zanj
,
A.
, and
Anqi
,
A. E.
,
2022
, “
Waste Heat Recovery of two Solar-Driven Supercritical CO2 Brayton Cycles: Exergoeconomic Analysis, Comparative Study, and Monthly Performance
,”
Appl. Therm. Eng.
,
214
, p.
118837
.
50.
Liang
,
Y.
,
Bian
,
X.
,
Qian
,
W.
,
Pan
,
M.
,
Ban
,
Z.
, and
Yu
,
Z.
,
2019
, “
Theoretical Analysis of a Regenerative Supercritical Carbon Dioxide Brayton Cycle/Organic Rankine Cycle Dual Loop for Waste Heat Recovery of a Diesel/Natural Gas Dual-Fuel Engine
,”
Energy Convers. Manag.
,
197
, p.
111845
.
51.
Di Battista
,
D.
,
Fatigati
,
F.
,
Carapellucci
,
R.
, and
Cipollone
,
R.
,
2021
, “
An Improvement to Waste Heat Recovery in Internal Combustion Engines via Combined Technologies
,”
Energy Convers. Manage.
,
232
, p.
113880
.
52.
Carapellucci
,
R.
, and
Di Battista
,
D.
,
2022
, “
Optimization of Supercritical CO2 Cycle Combined With Orc for Waste Heat Recovery
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
,
Columbus, OH
,
Oct. 30–Nov. 3
.
53.
Di Battista
,
D.
,
Di Bartolomeo
,
M.
, and
Cipollone
,
R.
,
2018
, “
Flow and Thermal Management of Engine Intake Air for Fuel and Emissions Saving
,”
Energy Convers. Manage.
,
173
, pp.
46
55
.
54.
Di Battista
,
D.
, and
Cipollone
,
R.
,
2023
, “
Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation
,”
Energies
,
16
(
8
), p.
3503
.
55.
Di Battista
,
D.
,
Cipollone
,
R.
,
Villante
,
C.
,
Fornari
,
C.
, and
Mauriello
,
M.
,
2016
, “
The Potential of Mixtures of Pure Fluids in ORC-Based Power Units Fed by Exhaust Gases in Internal Combustion Engines
,”
Energy Procedia
,
101
, pp.
1264
1271
.
You do not currently have access to this content.