Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Refuse-derived fuel (RDF) from municipal solid waste is a promising alternative to fossil fuels, but its varied composition can impede direct gasification. This industrial research project conducted a series of batch experiments to assess four key parameters: energy yield, mass yield, energy density, and combustion characteristics in the context of RDF torrefaction. The batch reactor processed RDF samples at temperatures of 250 °C, 300 °C, and 350 °C, each with a 30-minute residence time under an inert atmosphere. In addition, combustion thermogravimetric analysis experiments, involving heating torrefied RDF up to 1000 °C at a rate of 20 °C/min, provided further insights into the robust combustion properties of the torrefied material. Unlocking the secrets of torrefaction magic, we've achieved remarkable energy content boosts. Torrefaction at 250 °C, 300 °C, and 350 °C led to energy content enhancements of 22%, 29%, and 37%, respectively, compared to the original RDF. Notably, the most favorable energy yield was achieved during torrefaction at 250 °C, attributed to both its relatively high energy content and mass yield. At a torrefaction temperature of 250 °C and above, the torrefied RDF samples exhibited heating values comparable to standard coal ranges between 25 MJ/kg and 35 MJ/kg. It is suggested that torrefaction of RDF is an effective pre-treatment process to be used in entrained flow gasifier due to the improved higher heating value, higher energy density, and superior combustion characteristics, proved by the ignition index, flammability index, and burnout index, highlight the effectiveness of the torrefaction process.

References

1.
Rashwan
,
S.
,
Moreau
,
S.
, and
Boulet
,
M.
,
2024
, “
Catalyzing RDF Understanding: Quantified Insights From TGA Analysis
,”
ASME J. Energy Resour. Technol.
,
146
(
9
), p.
091203
.
2.
Rashwan
,
S. S.
,
Moreau
,
S.
, and
Boulet
,
M.
,
2024
, “
Navigating the Depths of Refuse-Derived Fuel in Canada: From Heterogeneity to Insightful Analysis
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
1
, pp.
1
20
.
3.
Basu
,
P.
,
2013
,
Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory
,
Elsevier Science & Technology
,
Oxford, UK
.
4.
Hasan
,
M.
, and
Haseli
,
Y.
,
2020
, “
An Oxyfuel Combustion-Based Torrefaction Process: Technoeconomic Analysis
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032205
.
5.
Silva
,
R. L.
,
Seye
,
O.
, and
Schneider
,
P. S.
,
2022
, “
Optimum Torrefaction Range for Macaw Husks Aiming Its Use as a Solid Biofuel
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041901
.
6.
Rashwan
,
S.
,
Moreau
,
S.
, and
Boulet
,
M.
,
2023
, “
Evaluation of Guide Parameters for Batch Torrefaction Experiments of Refused-Derived Fuel, RDF
,”
Proceedings of Combustion Institute—Canadian Section 2023 Spring Technical Meeting, University of Alberta
,
Alberta, ON, Canada
,
May 15–18
.
7.
Yan
,
W.
,
Hastings
,
J. T.
,
Acharjee
,
T. C.
,
Coronella
,
C. J.
, and
Vásquez
,
V. R.
,
2010
, “
Mass and Energy Balances of Wet Torrefaction of Lignocellulosic Biomass
,”
Energy Fuels
,
24
(
9
), pp.
4738
4742
.
8.
Akinyemi
,
O. S.
,
Jiang
,
L.
,
Buchireddy
,
P. R.
,
Barskov
,
S. O.
,
Guillory
,
J. L.
, and
Holmes
,
W.
,
2018
, “
Investigation of Effect of Biomass Torrefaction Temperature on Volatile Energy Recovery Through Combustion
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p.
112003
.
9.
Jagodzińska
,
K.
,
Czerep
,
M.
,
Kudlek
,
E.
,
Wnukowski
,
M.
,
Pronobis
,
M.
, and
Yang
,
W.
,
2020
, “
Torrefaction of Agricultural Residues: Effect of Temperature and Residence Time on the Process Products Properties
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070912
.
10.
Kung
,
K. S.
,
Thengane
,
S. K.
,
Shanbhogue
,
S.
, and
Ghoniem
,
A. F.
,
2019
, “
Parametric Analysis of Torrefaction Reactor Operating Under Oxygen-Lean Conditions
,”
Energy
,
181
(
1
), pp.
603
614
.
11.
Thengane
,
S. K.
,
Kung
,
K. S.
,
Gomez-Barea
,
A.
, and
Ghoniem
,
A. F.
,
2022
, “
Advances in Biomass Torrefaction: Parameters, Models, Reactors, Applications, Deployment, and Market
,”
Prog. Energy Combust. Sci.
,
93
(
1
), p.
101040
.
12.
Chen
,
W.-H.
,
Lin
,
B.-J.
,
Lin
,
Y.-Y.
,
Chu
,
Y.-S.
,
Ubando
,
A. T.
,
Show
,
P. L.
,
Ong
,
H. C.
, et al
,
2021
, “
Progress in Biomass Torrefaction: Principles, Applications and Challenges
,”
Prog. Energy Combust. Sci.
,
82
(
1
), p.
100887
.
13.
Ru
,
B.
,
Wang
,
S.
,
Dai
,
G.
, and
Zhang
,
L.
,
2015
, “
Effect of Torrefaction on Biomass Physicochemical Characteristics and the Resulting Pyrolysis Behavior
,”
Energy Fuels
,
29
(
9
), pp.
5865
5874
.
14.
Bach
,
Q. V.
,
Tran
,
K. Q.
,
Khalil
,
R. A.
,
Skreiberg
,
Ø.
, and
Seisenbaeva
,
G.
,
2013
, “
Comparative Assessment of Wet Torrefaction
,”
Energy Fuels
,
27
(
11
), pp.
6743
6753
.
15.
Rago
,
Y. P.
,
Collard
,
F.-X.
,
Görgens
,
J. F.
,
Surroop
,
D.
, and
Mohee
,
R.
,
2020
, “
Torrefaction of Biomass and Plastic From Municipal Solid Waste Streams and Their Blends: Evaluation of Interactive Effects
,”
Fuel
,
277
(
1
), p.
118089
.
16.
Granado
,
M. P. P.
,
Gadelha
,
A. M. T.
,
Rodrigues
,
D. S.
,
Antonio
,
G. C.
, and
De Conti
,
A. C.
,
2023
, “
Effect of Torrefaction on the Properties of Briquettes Produced From Agricultural Waste
,”
Bioresour. Technol. Rep.
,
21
(
1
), p.
101340
.
17.
Jagadale
,
M.
,
Gangil
,
S.
, and
Jadhav
,
M.
,
2023
, “
Enhancing Fuel Characteristics of Jute Sticks (Corchorus Sp.) Using Fixed Bed Torrefaction Process
,”
Renew. Energy
,
215
(
1
), p.
118992
.
18.
Fu
,
J.
,
Liu
,
J.
,
Xu
,
W.
,
Chen
,
Z.
,
Evrendilek
,
F.
, and
Sun
,
S.
,
2022
, “
Torrefaction, Temperature, and Heating Rate Dependencies of Pyrolysis of Coffee Grounds: Its Performances, Bio-Oils, and Emissions
,”
Bioresour. Technol.
,
345
(
1
), p.
126346
.
19.
Głód
,
K.
,
Lasek
,
J. A.
,
Supernok
,
K.
,
Pawłowski
,
P.
,
Fryza
,
R.
, and
Zuwała
,
J.
,
2023
, “
Torrefaction as a Way to Increase the Waste Energy Potential
,”
Energy
,
285
(
1
), p.
128606
.
20.
Han
,
Z.
,
Li
,
J.
,
Gu
,
T.
,
Yang
,
R.
,
Fu
,
Z.
,
Yan
,
B.
, and
Chen
,
G.
,
2021
, “
Effects of Torrefaction on the Formation and Distribution of Dioxins During Wood and PVC Pyrolysis: An Experimental and Mechanistic Study
,”
J. Anal. Appl. Pyrolysis
,
157
(
1
), p.
105240
.
21.
Yuan
,
H.
,
Wang
,
Y.
,
Kobayashi
,
N.
,
Zhao
,
D.
, and
Xing
,
S.
,
2015
, “
Study of Fuel Properties of Torrefied Municipal Solid Waste
,”
Energy Fuels
,
29
(
8
), pp.
4976
4980
.
22.
Białowiec
,
A.
,
Pulka
,
J.
,
Stępień
,
P.
,
Manczarski
,
P.
, and
Gołaszewski
,
J.
,
2017
, “
The RDF/SRF Torrefaction: An Effect of Temperature on Characterization of the Product—Carbonized Refuse Derived Fuel
,”
Waste Manag.
,
70
, pp.
91
100
.
23.
Nobre
,
C.
,
Vilarinho
,
C.
,
Alves
,
O.
,
Mendes
,
B.
, and
Gonçalves
,
M.
,
2019
, “
Upgrading of Refuse Derived Fuel Through Torrefaction and Carbonization: Evaluation of RDF Char Fuel Properties
,”
Energy
,
181
, pp.
66
76
.
24.
Nobre
,
C.
,
Alves
,
O.
,
Longo
,
A.
,
Vilarinho
,
C.
, and
Gonçalves
,
M.
,
2019
, “
Torrefaction and Carbonization of Refuse Derived Fuel: Char Characterization and Evaluation of Gaseous and Liquid Emissions
,”
Bioresour. Technol.
,
285
, p.
121325
.
25.
Białowiec
,
A.
,
Micuda
,
M.
, and
Koziel
,
J.
,
2018
, “
Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel
,”
Energies
,
11
(
11
), p.
3233
.
26.
Lasek
,
J. A.
,
Głód
,
K.
, and
Słowik
,
K.
,
2021
, “
The Co-Combustion of Torrefied Municipal Solid Waste and Coal in Bubbling Fluidised Bed Combustor Under Atmospheric and Elevated Pressure
,”
Renew. Energy
,
179
, pp.
828
841
.
27.
Tang
,
L.
,
Xiao
,
J.
,
Mao
,
Q.
,
Zhang
,
Z.
,
Yao
,
Z.
,
Zhu
,
X.
,
Ye
,
S.
, and
Zhong
,
Q.
,
2022
, “
Thermogravimetric Analysis of the Combustion Characteristics and Combustion Kinetics of Coals Subjected to Different Chemical Demineralization Processes
,”
ACS Omega
,
7
(
16
), pp.
13998
14008
.
28.
Iryani
,
D. A.
,
Rakaseri
,
I.
,
Azhar
,
A.
,
Haryanto
,
A.
,
Hidayat
,
W.
, and
Hasanudin
,
U.
,
2023
, “
Thermogravimetric Assessment for Combustion Characteristic of Torrefied Pellet Biomass From Agricultural Solid Waste
,”
IOP Conference Series: Earth and Environmental Science, Institute of Physics
,
Bandar Lampung, Indonesia
,
May 2023
.
29.
Song
,
C.-Z.
,
Wen
,
J.-H.
,
Li
,
Y.-Y.
,
Dan
,
H.
,
Shi
,
X.-Y.
, and
Xin
,
S.
,
2017
, “Thermogravimetric Assessment of Combustion Characteristics of Blends of Lignite Coals With Coal Gangue,”
Adv. Eng. Res.
,
1
(
1
).
30.
Vamvuka
,
D.
,
El Chatib
,
N.
, and
Sfakiotakis
,
S.
,
2011
, “Measurements of Ignition Point and Combustion Characteristics of Biomass Fuels and Their Blends With Lignite,” Combustion, (Jan. 2011).
31.
Menczel
,
J. D.
, and
Prime
,
R. B.
,
2009
,
Thermal Analysis of Polymers
,
Wiley
,
New York
.
32.
Souza-Santos
,
M. L. d.
,
2010
,
Solid Fuels Combustion and Gasification. Modeling, Simulation and Equipment Operation
,
Taylor & Francis Group
,
Boca Raton, FL
.
33.
Turns
,
S. R.
,
2000
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill Education Offices
,
New York
.
You do not currently have access to this content.