Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The drag-based Savonius-type wind rotors are usually preferred to harvest wind energy at low-wind velocity conditions. These Savonius rotors are characterized by their compatibility with urban environments and small-scale standalone systems besides their direction independency, absence of yaw mechanism, and easy installation and maintenance. Recent research trend indicates the implementation of biomimetic principles into the rotor blade design to develop novel bio-inspired/nature-inspired blade profiles for improving the rotor performance. The most recent example is the Orange sea-pen (Ptilosarcus gurneyi) inspired blade profile, which successfully carries over the insights of the sea-pen's feeding mechanism to the torque mechanism of the rotor besides improving the rotor performance. The present research article is aimed at conducting three-dimensional (3D) computational fluid dynamics (CFD) simulations. The 3D transient simulations are carried out by the ansys fluent software using the shear stress transport (SST) k–ω turbulence model. The reported experimental data of sea-pen-bladed rotor performance is utilized to validate the numerical performance trends. Considering the suitability of the Savonius wind rotor in lower wind velocities, the simulations have been conducted in the range of 5–7 m/s wind velocities. The operating conditions for the sea-pen and the semicircular-bladed rotor types are identical to have a direct comparison of their performances. The numerical findings reveal performance improvement of approximately 10–13% by the sea-pen blade as compared to the semicircular blade for a given range of wind velocities.

References

1.
Li
,
Z.
,
Gao
,
M.
,
Cao
,
X.
,
Cheng
,
L.
,
Wang
,
X.
,
An
,
G.
, and
Sun
,
H.
,
2022
, “
Structural Optimal Design and Power Generation Characteristics of a Bionic Type Nautilus Vertical Axis Wind Turbine
,”
J. Eng.
,
2022
(
1
), pp.
64
75
.
2.
Hashem
,
I.
,
Kerikous
,
E.
,
Hoerner
,
S.
, and
Thévenin
,
D.
,
2022
, “
Performance Investigation of a Savonius Wind Turbine With Unconventional Blade Designs Inspired by Sand Eels
,”
Conference on Modelling Fluid Flow (CMFF’22), The 18th International Conference on Fluid Flow Technologies
,
Budapest, Hungary
,
Aug. 30– Sept. 2
.
3.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
4.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
5.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
6.
Rathod
,
U. H.
,
Saha
,
U. K.
, and
Kulkarni
,
V.
,
2024
, “
Bioinspired Fluid Dynamic Designs of Vertical-Axis Turbines: State-of-the-Art Review and the Way Forward
,”
ASME J. Fluids Eng.
,
146
(
9
), p.
p. 090801
.
7.
Damota
,
J. B.
,
García
,
J. D. D. R.
,
Casanova
,
A. C.
,
Miranda
,
J. T.
,
Caccia
,
C. G.
, and
Galdo
,
M. I. L.
,
2022
, “
Analysis of a Nature-Inspired Shape for a Vertical Axis Wind Turbine
,”
Appl. Sci.
,
12
(
14
), p.
7018
.
8.
Damota
,
J. B.
,
Rodríguez García
,
J. D. D.
,
Couce Casanova
,
A.
,
Telmo Miranda
,
J.
,
Caccia
,
C. G.
, and
Galdo
,
M. I. L.
,
2022
, “
Optimization of a Nature-Inspired Shape for a Vertical Axis Wind Turbine Through a Numerical Model and an Artificial Neural Network
,”
Appl. Sci.
,
12
(
16
), p.
8037
.
9.
Blanco
,
J.
,
Rodriguez
,
J. D. D.
,
Couce
,
A.
, and
Lamas
,
M. I.
,
2021
, “
Proposal of a Nature-Inspired Shape for a Vertical Axis Wind Turbine and Comparison of Its Performance With a Semicircular Blade Profile
,”
Appl. Sci.
,
11
(
13
), p.
6198
.
10.
Hashem
,
I.
, and
Zhu
,
B.
,
2021
, “
Metamodeling-Based Parametric Optimization of a Bio-Inspired Savonius-Type Hydrokinetic Turbine
,”
Renewable Energy
,
180
, pp.
560
576
.
11.
Tian
,
K.
, and
Wu
,
Y.
,
2020
, “
Design of Anti-Glare Device for Freeway With Power Generation Using a Vertical Axis Wind Turbine
,”
International Conference on Advanced Mechatronic Systems, ICAMechS
,
Hanoi, Vietnam
,
Dec. 10–13
, pp.
100
103
.
12.
Niu
,
W. Q.
,
Li
,
M.
,
Yang
,
Z. X.
, and
Liu
,
C.
,
2018
, “
Wind Speed Influence Analysis on Performance of Fish-Bionic Wind Wheel
,”
Int. Conf. Adv. Mechatron. Syst. ICAMechS, 2018-Augus(71071078)
,
Zhengzhou, China
,
Aug. 30–Sept. 2
, pp.
46
51
.
13.
Li
,
G. S.
,
Yang
,
Z. X.
,
Song
,
L.
,
Chen
,
Q.
,
Li
,
Y. B.
, and
Chen
,
W.
,
2016
, “
Effects of Setting Angle on Performance of Fish-Bionic Wind Wheel
,”
IOP Conf. Ser. Earth Environ. Sci., Beijing, China
,
40
, pp.
012016
.
14.
Song
,
L.
,
Yang
,
Z. X.
,
Deng
,
R. T.
, and
Yang
,
X. G.
,
2013
, “
Performance and Structure Optimization for a New Type of Vertical Axis Wind Turbine
,”
International Conference on Advanced Mechatronic Systems, ICAMechS, IEEE
,
Luoyang, China
,
Sept. 25–27
, pp.
687
692
.
15.
Ma
,
C.
,
Song
,
L.
, and
Zhang
,
M. Z.
,
2017
, “
Performance Study for a Novel Vertical Axis Wind Turbine Based on Simulation Analysis
,”
Proceedings of the 14th International Conference on Networking, Sensing and Control, ICNSC 2017
,
Calabria, Italy
,
May 16–18
, IEEE, pp.
549
554
.
16.
Ashwindran
,
S. N.
,
Azizuddin
,
A. A.
, and
Oumer
,
A. N.
,
2022
, “
A Moment Coefficient Computational Study of Parametric Drag-Driven Wind Turbine at Moderate Tip Speed Ratios
,”
Aust. J. Mech. Eng.
,
20
(
2
), pp.
433
447
.
17.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2023
, “
Evolving a Bio-Inspired Blade Shape of the Drag-Based Vertical-Axis Wind Rotor Derived From Orange Sea-Pen (Ptilosarcus gurneyi)
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031007
.
18.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2023
, “Development of a Novel Drag-Based Vertical-Axis Wind Rotor Inspired From Orange Sea-Pen,”
Sustainable Energy Generation and Storage
,
V. S.
Moholkar
,
K.
Mohanty
, and
V. V.
Goud
, eds.,
Springer Nature
,
Singapore
, pp.
1
12
.
19.
Rathod
,
U. H.
,
Nalavade
,
C. S.
,
Saha
,
U. K.
, and
Kulkarni
,
V.
,
2023
, “
A Systematic Probe Into the Starting Torque Characteristics of a Bio-Inspired Orange Sea-Pen Bladed Savonius Wind Rotor
,”
Proceedings of the ASME 2023 Turbomachinary Technical Conference and Exhibition—TurboExpo 2023
,
Boston, MA
, ASME Paper No. GT2023-1028011.
20.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology : An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
21.
Mohan
,
M.
, and
Saha
,
U. K.
,
2024
, “
Evolving a Novel Blade Shape of a Savonius Wind Rotor Using an Optimization Technique Coupled With Numerical Simulations and Wind Tunnel Tests
,”
ASME J. Energy Resour. Technol.
,
146
(
4
), p.
041301
.
22.
Mohan
,
M.
,
Alom
,
N.
, and
Saha
,
U. K.
,
2023
, “
Role of Optimization and Soft-Computing Techniques in the Design and Development of Futuristic Savonius Wind Turbine Blades: A Review
,”
Wind Eng.
,
47
(
3
), pp.
722
744
.
23.
Milas
,
Z.
,
Vučina
,
D.
, and
Marinić-Kragić
,
I.
,
2014
, “
Multi-Regime Shape Optimization of Fan Vanes for Energy Conversion Efficiency Using CFD, 3D Optical Scanning and Parameterization
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
3
), pp.
407
421
.
24.
Nižetić
,
S.
,
Penga
,
Z.
, and
Arıcı
,
M.
,
2017
, “
Contribution to the Research of an Alternative Energy Concept for Carbon Free Electricity Production: Concept of Solar Power Plant with Short Diffuser
,”
Energy Convers. Manag.
,
148
, pp.
533
553
.
25.
Penga
,
Ž
,
Nižetić
,
S.
, and
Arıcı
,
M.
,
2019
, “
Solar Plant With Short Diffuser Concept: Further Improvement of Numerical Model by Included Influence of Guide Vane Topology on Shape and Stability of Gravitational Vortex
,”
J. Cleaner Prod.
,
212
, pp.
353
361
.
26.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Accurate CFD Simulations of Vertical Axis Wind Turbines at Different Tip Speed Ratios and Solidities: Guidelines for Azimuthal Increment, Domain Size and Convergence
,”
Energy Convers. Manag.
,
156
(
Sept.
), pp.
301
316
.
27.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2018
, “
Numerical Workflow for 3D Shape Optimization and Synthesis of Vertical-Axis Wind Turbines for Specified Operating Regimes
,”
Renewable Energy
,
115
, pp.
113
127
.
28.
McDaniel
,
N
.,
2006
, “
Orange Sea-Pen (Ptilosarcus gurneyi) (CC-BY-NC)
,” GBIF—the Glob. Biodivers. Inf. Facil., https://www.inaturalist.org/observations/69633218, Accessed October 29, 2021
29.
Strazzari
,
T.
,
2021
, “
Great Sea-Pen (Sarcoptilus grandis Gray) (CC-BY-NC)
,” GBIF—the Glob. Biodivers. Inf. Facil., https://www.inaturalist.org/observations/69075649, Accessed October 29, 2021
30.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Bushan, South Korea
,
June 19–24
, pp.
1
7
.
31.
Abdullah
,
M. S.
,
Ishak
,
M. H. H.
, and
Ismail
,
F.
,
2022
, “
Numerical Study of the 3D Savonius Turbine Under Stationary Conditions
,”
Eng. Fail. Anal.
,
136
, pp.
106199
.
32.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manag.
,
52
(
1
), pp.
236
242
.
33.
Chizari
,
H.
, and
Ismail
,
F.
,
2017
, “
A Grid-Insensitive LDA Method on Triangular Grids Solving the System of Euler Equations
,”
J. Sci. Comput.
,
71
(
2
), pp.
839
874
.
34.
Ismail
,
F.
, and
Chizari
,
H.
,
2017
, “
Developments of Entropy-Stable Residual Distribution Methods for Conservation Laws I: Scalar Problems
,”
J. Comput. Phys.
,
330
, pp.
1093
1115
.
35.
Chizari
,
H.
, and
Ismail
,
F.
,
2017
, “
Accuracy Variations in Residual Distribution and Finite Volume Methods on Triangular Grids
,”
Bull. Malaysian Math. Sci. Soc.
,
40
(
3
), pp.
1231
1264
.
36.
Eshagh Nimvari
,
M.
,
Fatahian
,
H.
, and
Fatahian
,
E.
,
2020
, “
Performance Improvement of a Savonius Vertical Axis Wind Turbine Using a Porous Deflector
,”
Energy Convers. Manag.
,
220
, pp.
113062
.
37.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
AbdEL-hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
8
15
.
38.
Venkatesan
,
R.
,
Navaneeth
,
K. N.
,
Vedachalam
,
N.
, and
Atmanand
,
M. A.
,
2019
, “
Observing the Oceans in Real Time—Need for Affordable Technology and Capacity Development
,”
Ocean. 2019 MTS/IEEE Seattle
,
Seattle, WA
,
Oct. 27–31
, pp.
1
7
.
39.
Mansour
,
H.
, and
Afify
,
R.
,
2020
, “
Design and 3D CFD Static Performance Study of a Two-Blade Icewind Turbine
,”
Energies
,
13
(
20
), p.
5356
.
40.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
78
89
.
41.
Alipour
,
R.
,
Alipour
,
R.
,
Fardian
,
F.
,
Koloor
,
S. S. R.
, and
Petrů
,
M.
,
2020
, “
Performance Improvement of a New Proposed Savonius Hydrokinetic Turbine: A Numerical Investigation
,”
Energy Rep.
,
6
, pp.
3051
3066
.
42.
Elbatran
,
A. H.
,
Ahmed
,
Y. M.
, and
Shehata
,
A. S.
,
2017
, “
Performance Study of Ducted Nozzle Savonius Water Turbine, Comparison With Conventional Savonius Turbine
,”
Energy
,
134
, pp.
566
584
.
43.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
, pp.
722
734
.
44.
Babu
,
M. S.
,
Sirisha
,
K.
,
Subbaraju
,
M. A.
, and
Rohan
,
B.
,
2021
, “
Three-Dimensional CFD Analysis on Modified Savonius Wind Turbine
,”
Int. Res. J. Eng. Technol.
,
8
(
10
), pp.
1725
1730
. https://www.irjet.net/archives/V8/i10/IRJET-V8I10267.pdf.
45.
Al-Gburi
,
K. A. H.
,
Alnaimi
,
F. B. I.
,
Al-quraishi
,
B. A. J.
,
Tan
,
E. S.
, and
Kareem
,
A. K.
,
2023
, “
Enhancing Savonius Vertical Axis Wind Turbine Performance: A Comprehensive Approach With Numerical Analysis and Experimental Investigations
,”
Energies
,
16
(
10
), p.
4204
.
46.
Chen
,
Y.
,
Zhang
,
D.
,
Guo
,
P.
,
Hu
,
Q.
, and
Li
,
J.
,
2024
, “
A Comparative Analysis of 2-D and 3-D Simulation for Savonius Hydrokinetic Turbine Array
,”
Ocean Eng.
,
295
(
Feb.
), pp.
116909
.
You do not currently have access to this content.