Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Enhanced combustion technology is identified as a method that can improve both combustion efficiency and energy utilization. In this article, a bump turbulence structure designed for the channels of a wave rotor combustor is introduced. The effects of the bump turbulence structure are compared with those of a traditional straight-plate structure of equivalent height. The mechanisms through which the bump turbulence structure influences the flow field and accelerates the flame are analyzed, and the impact of various positions of the bump turbulence structure on combustion outcomes is explored. The analysis of results indicates that the bump structure exhibits superior advantages over the straight-plate structure when considering both pressure loss and enhanced combustion effects. The bump structure alters the pressure distribution within the channel, increasing disturbances in the flow field and creating a positive feedback mechanism with flame acceleration. The initial position of the bump structure influences the speed of flame propagation within the channel. When the bump structure is positioned close to the ignition source, a notable acceleration of the flame is observed during the initial stages of combustion. Conversely, when the bump structure is situated away from the ignition source, a significant flame acceleration is evident during the later stages of combustion. For the channels of wave rotor combustors, there should be an optimal position of the bump structure to maximize the effect of flame acceleration.

References

1.
Zhao
,
Y.
,
Ji
,
Y.
,
Hu
,
D.
, and
Wang
,
J.
,
2023
, “
Experimental Research of the Entire Wave System Inside a Wave Rotor Refrigerator and the Impact Of Pressure Ratios on the Equipment Performance
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062101
.
2.
Hu
,
D.
,
Yu
,
Y.
,
Liu
,
P.
,
Wu
,
X.
, and
Zhao
,
Y.
,
2019
, “
Improving Refrigeration Performance by Using Pressure Exchange Characteristic of Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022004
.
3.
Liu
,
P.
,
Feng
,
M.
,
Liu
,
X.
,
Wang
,
H.
, and
Hu
,
D.
,
2022
, “
Performance Analysis of Wave Rotor Based on Response Surface Optimization Method
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061302
.
4.
Liu
,
P.
,
Li
,
X.
,
Liu
,
X.
,
Yang
,
J.
,
Feng
,
M.
, and
Hu
,
D.
,
2021
, “
Investigation of the Shock Wave Formation and Intensity in Wave Rotor
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
111301
.
5.
Zhao
,
W.
,
Hu
,
D.
,
Liu
,
P.
,
Dai
,
Y.
,
Zou
,
J.
,
Zhu
,
C.
, and
Zhao
,
J.
,
2012
, “
The Port Width and Position Determination for Pressure-Exchange Ejector
,”
ASME J. Energy Resour. Technol.
,
134
(
6
), p.
064502
.
6.
Nalim
,
M. R.
,
Snyder
,
P. H.
, and
Kowalkowski
,
M.
,
2017
, “
Experimental Test, Model Validation, and Viability Assessment of a Wave-Rotor Constant-Volume Combustor
,”
AIAA J. Propul. Power
,
33
(
1
), pp.
163
175
.
7.
Akbari
,
P.
, and
Szpynda
,
E.
,
2007
, “
Recent Developments in Wave Rotor CombustionTechnology and Future Perspectives: A Progress Review
,”
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Cincinnati, OH
,
July 8–11
.
8.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.
9.
Li
,
J.
,
Gong
,
E.
,
Yuan
,
L.
,
Li
,
W.
, and
Zhang
,
K.
,
2017
, “
Experimental Investigation on Pressure Rise Characteristics in an Ethylene Fuelled Wave Rotor Combustor
,”
Energy Fuels
,
31
(
9
), pp.
10165
10177
.
10.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.
11.
Zheng
,
R.
,
Gong
,
E.
,
Li
,
J.
,
Yao
,
Q.
, and
Nie
,
Z.
,
2024
, “
Performance Analysis of Wave Rotor Combustor Integration Into Baseline Engines: A Comparative Study of Pressure-Gain and Work Cycles
,”
Energies
,
17
(
9
), p.
2074
.
12.
Akbari
,
P.
,
Kharazi
,
A. A.
, and
Müller
,
N.
,
2003
, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
,”
ASME 2003 International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
.
13.
Akbari
,
P.
, and
Mueller
,
N.
,
2004
, “
Performance Improvement of Recuperated and Unrecuperated Microturbines Using Wave Rotor Machines
,”
ASME CIMAC Congress
,
Kyoto, Japan
,
June 7–11
.
14.
Li
,
H.
,
Akbari
,
P.
, and
Nalim
,
R.
,
2013
, “
Air-Standard Thermodynamic Analysis of Gas Turbine Engines Using Wave Rotor Combustion
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
5050
.
15.
Najim
,
Y. M.
,
Mueller
,
N.
, and
Wichman
,
I. S.
,
2015
, “
On Premixed Flame Propagation in a Curved Constant Volume Channel
,”
Combust. Flame
,
162
(
10
), pp.
3980
3990
.
16.
Gong
,
E.
,
Hao
,
Y.
, and
Cao
,
X.
,
2023
, “
Research on the Working Characteristics of Wave Rotor Combustor Hot Jet Igniter and Its Validation
,”
Appl. Therm. Eng.
,
235
, p.
121407
.
17.
Li
,
J.
,
Gong
,
E.
,
Yuan
,
L.
,
Li
,
W.
, and
Zhang
,
K.
,
2018
, “
Experimental Investigation on Flame Formation and Propagation Characteristics in an Ethylene Fuelled Wave Rotor Combustor
,”
Energy Fuels
,
32
(
2
), pp.
2366
2375
.
18.
Ponizy
,
B.
,
Claverie
,
A.
, and
Veyssière
,
B.
,
2014
, “
Tulip Flame-The Mechanism of Flame Front Inversion
,”
Combust. Flame
,
161
(
12
), pp.
3051
3062
.
19.
Xiao
,
H.
,
Makarov
,
D.
,
Sun
,
J.
, and
Molkov
,
V.
,
2012
, “
Experimental and Numerical Investigation of Premixed Flame Propagation With Distorted Tulip Shape in a Closed Duct
,”
Combust. Flame
,
159
(
4
), pp.
1523
1538
.
20.
Hariharan
,
A.
, and
Wichman
,
I. S.
,
2014
, “
Premixed Flame Propagation and Morphology in a Constant Volume Combustion Chamber
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1025
1040
.
21.
Ma
,
H.
,
Jia
,
L.
,
Hou
,
S.
,
Zhang
,
Y.
,
Liu
,
S.
, and
Gao
,
H.
,
2021
, “
Initiation and Propagation Processes of Rotating Detonation Wave Based on Pre-Detonation Tube
,”
J. Propul. Technol.
,
42
(
4
), pp.
826
833
.
22.
Zhou
,
S.
,
Ma
,
H.
,
Zhou
,
C.
, and
Hu
,
N.
,
2021
, “
Experimental Research on the Propagation Process of Rotating Detonation Wave With a Gaseous Hydrocarbon Mixture Fuel
,”
Acta Astronaut.
,
179
, pp.
1
10
.
23.
Lee
,
S. Y.
,
Watts
,
J.
,
Saretto
,
S.
,
Pal
,
S.
,
Conrad
,
C.
,
Woodward
,
R.
, and
Santoro
,
R.
,
2004
, “
Deflagration to Detonation Transition Processes by Turbulence-Generating Obstacles in Pulse Detonation Engines
,”
J. Propul. Power
,
20
(
6
), pp.
1026
1036
.
24.
Qin
,
Y.
, and
Chen
,
X.
,
2021
, “
Flame Propagation of Premixed Hydrogen-Air Explosion in a Closed Duct With Obstacles
,”
Int. J. Hydrogen Energy
,
46
(
2
), pp.
2684
2701
.
25.
Cao
,
X.
,
Wei
,
H.
,
Wang
,
Z.
,
Wang
,
Y.
,
Fan
,
L.
, and
Lu
,
Y.
,
2022
, “
Effect of Obstacle on the H2/CO/Air Explosion Characteristics Under Lean-Fuel Conditions
,”
Fuel
,
319
, p.
123834
.
26.
Xiao
,
H.
, and
Oran
,
E. S.
,
2020
, “
Flame Acceleration and Deflagration-To-Detonation Transition in Hydrogen-Air Mixture in a Channel With an Array of Obstacles of Different Shapes
,”
Combust. Flame
,
220
, pp.
378
393
.
27.
Na'inna
,
A. M.
,
Somuano
,
G. B.
,
Phylaktou
,
H. N.
, and
Andrews
,
G. E.
,
2015
, “
Flame Acceleration in Tube Explosions With up to Three Flat-Bar Obstacles With Variable Obstacle Separation Distance
,”
J. Loss Prev. Process Ind.
,
38
, pp.
119
124
.
28.
Zuo
,
Q.
,
Wang
,
Z.
,
Zhen
,
Y.
,
Zhang
,
S.
,
Cui
,
Y.
, and
Jiang
,
J.
,
2017
, “
The Effect of an Obstacle on Methane-Air Explosions in a Spherical Vessel Connected to a Pipeline
,”
Process Saf. Prog.
,
36
(
1
), pp.
67
73
.
29.
Yin
,
Z.
,
Wang
,
Z.
,
Cao
,
X.
,
Zhen
,
Y.
,
Jiang
,
K.
,
Ma
,
S.
, and
Gao
,
W.
,
2022
, “
Effects of Obstacles on Deflagration-To-Detonation Transition in Linked Vessels
,”
Combust. Sci. Technol.
,
194
(
6
), pp.
1265
1281
.
30.
Li
,
J.
,
Yuan
,
L.
, and
Mongia
,
H. C.
,
2017
, “
Simulation of Combustion Characteristics in a Hydrogen Fuelled Lean Single-Element Direct Injection Combustor
,”
Int. J. Hydrogen Energy
,
42
(
5
), pp.
3536
3548
.
31.
Wang
,
Z.
,
Cai
,
Z.
,
Sun
,
M.
,
Wang
,
H.
, and
Zhang
,
Y.
,
2016
, “
Large Eddy Simulation of the Flame Stabilization Process in a Scramjet Combustor With Rearwall-Expansion Cavity
,”
Int. J. Hydrogen Energy
,
41
(
42
), pp.
19278
19288
.
32.
Wanik
,
A.
, and
Schnell
,
U.
,
1989
, “
Some Remarks on the PISO and SIMPLE Algorithms for Steady Turbulent Flow Problems
,”
Comput. Fluids
,
17
(
4
), pp.
555
570
.
33.
Li
,
J.
,
Yuan
,
L.
,
Li
,
W.
, and
Zhang
,
K.
,
2018
, “
Numerical Investigation of Combustion Characteristics of s Wave Rotor Combustor Based on a Reduced Reaction Mechanism of Ethylene
,”
Int. J. Aerosp. Eng.
,
2018
(
1
).
34.
Zheng
,
R.
,
Li
,
J.
,
Gong
,
E.
,
Qin
,
Q.
, and
Feng
,
Z.
,
2024
, “
Numerical Investigation of the Unsteady Flow and Wave Dynamics in a Wave Rotor Combustor
,”
Shock Waves
,
34
(
3
), pp.
257
271
.
35.
Snyder
,
P.
,
Elharis
,
T.
,
Wijeyakulasuriya
,
S.
,
Nalim
,
M.
,
Matsutomi
,
Y.
, and
Meyer
,
S.
,
2011
, “
Pressure Gain Combustor Component Viability Assessment Based on Initial Testing
,”
47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
San Diego, CA
,
July 31–Aug. 3
.
36.
Sekar
,
M.
,
Alahmadi
,
T. A.
, and
Nithya
,
S.
,
2024
,
“Numerical Simulation of Industrial gas Burners Fueled With Hydrogen-Methane Mixtures for Enhanced Combustion Efficiency and Reduced Greenhouse Gas Emissions
,”
Fuel
,
370
, p.
131807
.
You do not currently have access to this content.