Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The full oxidation of ethanol in a direct alcohol fuel cell remains a significant technical obstacle. A thermodynamic model of the cell has been developed, incorporating a mixed solution of methanol and ethanol, which considers the oxidation of methanol as well as the complete and incomplete oxidations of ethanol. If the activities of the catalysts at electrodes are stable, the effects of C–C bond cleavage in alcohol and further oxidation of intermediates on the performance of the cell can be quantitatively described. The physical driving force of the electrochemical reactions is displayed by using thermodynamics, then the irreversible losses from the ionization activity, ohm resistance, and finite-rate diffusion of fuels are considered, and finally, the optimization criterion is determined. The optimum power density and optimum efficiency are monotonically decreasing functions of the molar concentration of ethanol in the solution. However, the molar concentration of ethanol in the cell is suggested smaller than 0.0107 mol/cm3 to balance the two performance indicators. In such a range, the optimum power density and optimum efficiency are greater than 0.7626 J/s/cm2 and 19.6%, respectively, and the required molar composition of alcoholic solution at the inlet of the channel, the molar concentration of methanol, and three partial current densities in the cell are proposed. The research supplies a novel way to improve the performance of direct alcohol fuel cells.

References

1.
Lamy
,
C.
,
Lima
,
A.
,
LeRhun
,
V.
,
Delime
,
F.
,
Coutanceau
,
C.
, and
Léger
,
J.-M.
,
2002
, “
Recent Advances in the Development of Direct Alcohol Fuel Cells (DAFC)
,”
J. Power Sources
,
105
(
2
), pp.
283
296
.
2.
Ramachander
,
J.
, and
Gugulothu
,
S.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
3.
Raviteja
,
S.
,
Ramakrishna
,
P. A.
, and
Ramesh
,
A.
,
2022
, “
Performance Enhancement Using Different Nitromethane Blends in a Small Two-Stroke Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032303
.
4.
Fadzillah
,
D. M.
,
Kamarudin
,
S. K.
,
Zainoodin
,
M. A.
, and
Masdar
,
M. S.
,
2019
, “
Critical Challenges in the System Development of Direct Alcohol Fuel Cells as Portable Power Supplies: An Overview
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
3031
3054
.
5.
Kulikovsky
,
A.
,
2019
,
Analytical Modeling of Fuel Cells
, 2nd ed.,
Elsevier
,
Oxford, UK
.
6.
Oliveira
,
V. B.
,
Pereira
,
J. P.
, and
Pinto
,
A. M. F. R.
,
2017
, “
Modeling of Passive Direct Ethanol Fuel Cells
,”
Energy
,
133
, pp.
652
665
.
7.
Li
,
S.
,
Shu
,
J.
,
Ma
,
S.
,
Yang
,
H.
,
Jin
,
J.
,
Zhang
,
X.
, and
Jin
,
R.
,
2021
, “
Engineering Three-Dimensional Nitrogen-Doped Carbon Black Embedding Nitrogen-Doped Graphene Anchoring Ultrafine Surface-Clean Pd Nanoparticles as Efficient Ethanol Oxidation Electrocatalyst
,”
Appl. Catal., B
,
280
, p.
119464
.
8.
Leo
,
T.
,
Raso
,
M.
,
Navarro
,
E.
, and
Sánchez-de-la-Blanca
,
E.
,
2011
, “
Comparative Exergy Analysis of Direct Alcohol Fuel Cells Using Fuel Mixtures
,”
J. Power Sources
,
196
(
3
), pp.
1178
1183
.
9.
Pei
,
H.Y.
,
Lin
,
C.H.
,
Lin
,
W.
, and
Yuan
,
C.-J.
,
2021
, “
Generation of a Highly Efficient Electrode for Ethanol Oxidation by Simply Electrodepositing Palladium on the Oxygen Plasma-Treated Carbon Fiber Paper
,”
Catalysts
,
11
(
2
), p.
248
.
10.
Daryakenari
,
A. A.
,
Mosallanejad
,
B.
,
Zare
,
E.
,
Daryakenari
,
M. A.
,
Montazeri
,
A.
,
Apostoluk
,
A.
, and
Delaunay
,
J.-J.
,
2021
, “
Highly Efficient Electrocatalysts Fabricated via Electrophoretic Deposition for Alcohol Oxidation, Oxygen Reduction, Hydrogen Evolution, and Oxygen Evolution Reactions
,”
Int. J. Hydrogen Energy
,
46
(
10
), pp.
7263
7283
.
11.
Zhao
,
Y.
,
Liu
,
C.
, and
Huang
,
Q.
,
2021
, “
Ultrafine Pt Stabilized on Ti3C2Tx/Reduced Graphene Oxide Nanocomposites for Alcohol Oxidation Reaction (AOR)
,”
Mater. Lett.
,
285
, p.
129082
.
12.
Shamraiz
,
U.
,
Raza
,
B.
,
Ullah
,
S.
,
Badshah
,
A.
, and
Nadeem
,
M. A.
,
2020
, “
Low Cost Efficient Sr(OH)2 Promoted Pd/rGO Electrocatalyst for Direct Alcohol Fuel Cell
,”
Appl. Surf. Sci.
,
507
, p.
145022
.
13.
Sundmacher
,
K.
,
Schultz
,
T.
,
Zhou
,
S.
,
Scott
,
K.
,
Ginkel
,
M.
, and
Gilles
,
E. D.
,
2001
, “
Dynamics of the Direct Methanol Fuel Cell (DMFC): Experiments and Model-Based Analysis
,”
Chem. Eng. Sci.
,
56
(
2
), pp.
333
341
.
14.
Ahmad Zakil
,
F.
,
Kamarudin
,
S. K.
, and
Basri
,
S.
,
2016
, “
Modified Nafion Membranes for Direct Alcohol Fuel Cells: An Overview
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
841
852
.
15.
Shroti
,
N.
,
Barbora
,
L.
, and
Verma
,
A.
,
2011
, “
Neodymium Triflate Modified Nafion Composite Membrane for Reduced Alcohol Permeability in Direct Alcohol Fuel Cell
,”
Int. J. Hydrogen Energy
,
36
(
22
), pp.
14907
14913
.
16.
Li
,
Y.
,
Wong
,
L. M.
,
Xie
,
H.
,
Wang
,
S.
, and
Su
,
P.-C.
,
2017
, “
Nanoporous Palladium Anode for Direct Ethanol Solid Oxide Fuel Cells With Nanoscale Proton-Conducting Ceramic Electrolyte
,”
J. Power Sources
,
340
, pp.
98
103
.
17.
Ishak
,
N. A. I. M.
,
Kamarudin
,
S. K.
,
Timmiati
,
S.
,
Karim
,
N. N.
, and
Basri
,
S.
,
2021
, “
Biogenic Platinum From Agricultural Wastes Extract for Improved Methanol Oxidation Reaction in Direct Methanol Fuel Cell
,”
J. Adv. Res.
,
28
, pp.
63
75
.
18.
Kavanagh
,
R.
,
Cao
,
X.-M.
,
Lin
,
W.-F.
,
Hardacre
,
C.
, and
Hu
,
P.
,
2012
, “
Origin of Low CO2 Selectivity on Platinum in the Direct Ethanol Fuel Cell
,”
Angew. Chem. Int. Ed.
,
51
(
7
), pp.
1572
1575
.
19.
Sheng
,
T.
,
Qiu
,
C.
,
Lin
,
X.
,
Lin
,
W.-F.
, and
Sun
,
S.-C.
,
2020
, “
Insights Into Ethanol Electro-Oxidation Over Solvated Pt (100): Origin of Selectivity and Kinetics Revealed by DFT
,”
Appl. Surf. Sci.
,
533
, p.
147505
.
20.
Tang
,
C.-W.
,
Liu
,
C.-H.
,
Wang
,
C.-C.
, and
Wang
,
C.-B.
,
2021
, “
Electro-Oxidation of Methanol, Ethanol, and Ethylene Glycol Over Pt/TiO2-C and PtSn/TiO2-C Anodic Catalysts
,”
Int. J. Electrochem. Sci.
,
16
(
10
), p.
211045
.
21.
Zou
,
B.
,
Gao
,
F.
,
You
,
H.
,
Li
,
Z.
,
Zhang
,
Y.
,
Wu
,
Z.
,
Song
,
T.
, and
Du
,
Y.
,
2021
, “
One-Pot Synthesis of Rugged PdRu Nanosheets as the Efficient Catalysts for Polyalcohol Electrooxidation
,”
J. Colloid Interface Sci.
,
601
, pp.
42
49
.
22.
Selepe
,
C. T.
,
Gwebu
,
S. S.
,
Matthews
,
T.
,
Mashola
,
T. A.
,
Sikeyi
,
L. L.
,
Zikhali
,
M.
, and
Maxakato
,
N. W.
,
2021
, “
Effect of Sn Doping on Pd Electro-Catalysts for Enhanced Electro-Catalytic Activity Towards Methanol and Ethanol Electro-Oxidation in Direct Alcohol Fuel Cells
,”
Nanomaterials
,
11
(
10
), p.
2725
.
23.
Jurzinsky
,
T.
,
Cremers
,
C.
,
Pinkwart
,
K.
, and
Tübke
,
J.
,
2013
, “
Palladium-Based Bimetallic Catalysts for Alkaline Direct Alcohol Fuel Cell (ADAFC)
,”
ECS Trans.
,
58
(
1
), pp.
633
636
.
24.
Li
,
Q.
,
Qin
,
G.
,
Wu
,
L.
,
Zhao
,
Y.
, and
Wang
,
X.
,
2021
, “
High Catalytic Performance of a Pd-Loaded TaN-TaC Electrocatalyst for Ethylene Glycol Oxidation in an Alkaline Medium
,”
Appl. Surf. Sci.
,
537
, p.
147849
.
25.
Duan
,
H.
,
Wang
,
H.
, and
Huang
,
W.
,
2021
, “
Influence of Polyvinylpyrrolidone Capping Ligands on Electrocatalytic Oxidation of Methanol and Ethanol Over Palladium Nanocrystal Electrocatalysts
,”
Acta Phys. Chim. Sin.
,
37
(
10
), p.
2003005
.
26.
Xie
,
S.
,
Deng
,
L.
,
Huang
,
H.
,
Yuan
,
J.
,
Xu
,
J.
, and
Yue
,
R.
,
2022
, “
One-Pot Synthesis of Porous Pd-Polypyrrole/Nitrogen-Doped Graphene Nanocomposite as Highly Efficient Catalyst for Electrooxidation of Alcohols
,”
J. Colloid Interface Sci.
,
608
, pp.
3130
3140
.
27.
Chen
,
F.
,
Chi
,
X.
,
Wei
,
W.
,
Mo
,
T.
, and
Li
,
Y.
,
2023
, “
Model-Based Observer for Direct Methanol Fuel Cell Concentration Estimation by Using Second-Order Sliding-Mode Algorithm
,”
Energy
,
263
, p.
125790
.
28.
Choudhary
,
T.
, and
Sanjay
,
2016
, “
Computational Analysis of IR-SOFC: Thermodynamic, Electrochemical Process and Flow Configuration Dependency
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1259
1271
.
29.
Blanco-Cocom
,
L.
,
Botello-Rionda
,
S.
,
Ordoñez
,
L. C.
, and
Ivvan Valdez
,
S.
,
2023
, “
Parameter Estimation for Empirical and Semi-Empirical Models in a Direct Ethanol Fuel Cell
,”
Energy Rep.
,
10
, pp.
451
459
.
30.
De Bortoli
,
A.
,
2023
, “
Flow Simulation in Direct Ethanol Fuel Cells Using Multifunctional Anode Catalysts
,”
J. Power Sources
,
560
, p.
232675
.
31.
Lide
,
D. R.
,
2007
,
CRC Handbook of Chemistry and Physics, Internet Version
, 87th ed.,
Taylor and Francis
,
Boca Raton, FL
.
32.
Wang
,
S.
,
2001
,
Handbook of Petrochemical Design
, Vol.
1
,
Chemical Industry Press
,
Beijing
.
33.
Zhang
,
X.
,
Ni
,
M.
,
Wang
,
J.
,
Yang
,
L.
,
Mao
,
X.
,
Su
,
S.
,
Yang
,
Z.
, and
Chen
,
J.
,
2020
, “
Configuration Design and Parametric Optimum Selection of a Self-Supporting PEMFC
,”
Energy Convers. Manage.
,
225
, p.
113391
.
34.
Pramanik
,
H.
, and
Basu
,
S.
,
2010
, “
Modeling and Experimental Validation of Overpotentials of a Direct Ethanol Fuel Cell
,”
Chem. Eng. Process.
,
49
(
7
), pp.
635
642
.
35.
Poling
,
B.
,
Prausnitz
,
J.
, and
O’Connell
,
J.
,
2001
,
The Properties of Gases and Liquids
, 5th ed.,
The McGraw-Hill Companies Inc.
,
Singapore
, pp.
11.28
31
.
36.
Fedkin
,
M. V.
,
Zhou
,
X.
,
Hofmann
,
M. A.
,
Chalkova
,
E.
,
Weston
,
J. A.
,
Allcock
,
H. R.
, and
Lvov
,
S. N.
,
2002
, “
Evaluation of Methanol Crossover in Proton-Conducting Polyphosphazene Membranes
,”
Mater. Lett.
,
52
(
3
), pp.
192
196
.
37.
Andreadis
,
G. M.
,
Podias
,
A. K. M.
, and
Tsiakaras
,
P. E.
,
2008
, “
The Effect of the Parasitic Current on the Direct Ethanol PEM Fuel Cell Operation
,”
J. Power Sources
,
181
(
2
), pp.
214
227
.
38.
Kulikovsky
,
A.
,
2010
,
Analytical Modelling of Fuel Cells
, 1st ed.,
Elsevier
,
Oxford, UK
.
39.
Tang
,
D.
,
Sun
,
H.
,
Xu
,
G.
, and
Xiao
,
Y.
,
2023
, “
Simulation of the Effect of Channel Shrinking Rate on the Performance of Tubular Direct Ethanol Fuel Cell
,”
Int. J. Heat Mass Transfer
,
212
, p.
124217
.
40.
Osman
,
S.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Carbon Dioxide Bubbles Removal by Capillary Actuation in the Anode Channel of Direct Methanol Fuel Cells
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090903
.
41.
Hamann
,
C.
,
Hamnett
,
A.
, and
Vielstich
,
W.
,
2007
,
Electrochemistry
, 2nd ed.,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
.
42.
Chang
,
J.
,
Wang
,
G.
,
Li
,
C.
,
He
,
Y.
,
Zhu
,
Y.
,
Zhang
,
W.
,
Sajid
,
M.
,
Kara
,
A.
,
Gu
,
M.
, and
Yang
,
Y.
,
2023
, “
Rational Design of Septenary High-Entropy Alloy for Direct Ethanol Fuel Cells
,”
Joule
,
7
(
3
), pp.
587
602
.
43.
Hren
,
M.
,
Roschger
,
M.
,
Hacker
,
V.
,
Genorio
,
B.
,
Fakin
,
D.
, and
Gorgieva
,
S.
,
2023
, “
High Performance Chitosan/Nanocellulose-Based Composite Membrane for Alkaline Direct Ethanol Fuel Cells
,”
Int. J. Biol. Macromol.
,
253
, p.
127693
.
44.
Fajardo
,
S.
,
Ocón
,
P.
,
Rodríguez
,
J.
, and
Pastor
,
E.
,
2023
, “
Co Supported on N and S Dual-Doped Reduced Graphene Oxide as Highly Active Oxygen-Reduction Catalyst for Direct Ethanol Fuel Cells
,”
Chem. Eng. J.
,
461
, p.
142053
.
45.
Vecchio
,
C. L.
,
Lyu
,
X.
,
Gatto
,
I.
,
Zulevi
,
B.
,
Serov
,
A.
, and
Baglio
,
V.
,
2023
, “
Performance Investigation of Alkaline Direct Methanol Fuel Cell With Commercial PGM-Free Cathodic Materials
,”
J. Power Sources
,
561
, p.
232732
.
46.
Bhunia
,
K.
,
Seok
,
J.
,
Perumalsamy
,
M.
,
Bejigo
,
K. S.
,
Elumalai
,
V.
,
Lee
,
S. U.
, and
Kim
,
S.-J.
,
2024
, “
Atomically Dispersed Dual Iron and Manganese Anchored Nitrogen Doped Reduced Graphene as Robust Cathode Catalyst for Direct Methanol Fuel Cell and Aluminium Air Battery
,”
Nano Energy
,
129
, p.
109966
.
47.
Abdelrahman
,
M. E.
,
Zhang
,
H.
,
Wu
,
G.
,
Li
,
X.
, and
Litster
,
S.
,
2022
, “
Half-Cell Electrode Assessments of a Crossover-Tolerant Direct Methanol Fuel Cell With a Platinum Group Metal-Free Cathode
,”
Electrochim. Acta
,
416
, p.
140262
.
48.
Liu
,
D.
,
Xie
,
Y.
,
Zhao
,
Z.
,
Li
,
J.
,
Pang
,
J.
, and
Jiang
,
Z.
,
2023
, “
Structural Optimization and Performance Trade-off Strategies for Semi-Crystalline Sulfonated Poly (Arylene Ether Ketone) Membranes in High-Concentration Direct Methanol Fuel Cells
,”
J. Energy Chem.
,
85
, pp.
67
75
.
49.
Sinha
,
A. A.
,
Saini
,
G.
,
Sanjay, Shukla
,
A. K.
,
Ansari
,
M. A.
,
Dwivedi
,
G.
, and
Choudhary
,
T.
,
2023
, “
A Novel Comparison of Energy-Exergy, and Sustainability Analysis for Biomass-Fueled Solid Oxide Fuel Cell Integrated Gas Turbine Hybrid Configuration
,”
Energy Conver. Manage.
,
283
, p.
116923
.
50.
Choudhary
,
T.
, and
Sanjay
,
2017
, “
Novel and Optimal Integration of SOFC-ICGT Hybrid Cycle: Energy Analysis and Entropy Generation Minimization
,”
Int. J. Hydrogen Energy
,
42
(
23
), pp.
15597
15612
.
51.
Sinha
,
A. A.
,
Choudhary
,
T.
,
Ansari
,
M. Z.
, and
Sanjay
,
2023
, “
Estimation of Exergy-Based Sustainability Index and Performance Evaluation of a Novel Intercooled Hybrid Gas Turbine System
,”
Int. J. Hydrogen Energy
,
48
(
23
), pp.
8629
8644
.
52.
Sinha
,
A. A.
,
Sanjay, Ansari
,
M. Z.
,
Shukla
,
A. K.
, and
Choudhary
,
T.
,
2023
, “
Comprehensive Review on Integration Strategies and Numerical Modeling of Fuel Cell Hybrid System for Power & Heat Production
,”
Int. J. Hydrogen Energy
,
48
(
86
), pp.
33669
33704
.
You do not currently have access to this content.