Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Achieving high temperature lifts (>200K) via a chemical heat pump based on salt hydration/dehydration reactions requires the transport of water vapor from low to high pressure. Alternative compression approaches require condensing of low-pressure water vapor, pumping of liquid water, and subsequent evaporation when the low-side pressure corresponds to sub-ambient water saturation temperatures. Thus, this study compares four steam compression methods for use within a chemical heat pump system based on a reversible calcium oxide hydration/dehydration reaction with a temperature lift from 350C heat to >600C. Purely mechanical and thermochemical/mechanical compression technologies are considered. A parametric study of maximum allowable temperature, the isentropic efficiency of mechanical compressors, the effectiveness of heat exchangers, and the assumed allowable heat exchanger pressure drop is conducted to determine the mechanical and thermal energy consumed per kilogram of compressed steam. The system complexity in terms of the number of main system components, maximum pressure ratio, and maximum allowable temperature is estimated. Model results show an absorption-based steam compressor has the highest exergetic efficiency for the required chemical heat pump conditions. This system configuration was then experimentally demonstrated to illustrate the impact of system performance on component effectiveness.

References

1.
Hayatina
,
I.
,
Auckaili
,
A.
, and
Farid
,
M.
,
2023
, “
Review on Salt Hydrate Thermochemical Heat Transformer
,”
Energies
,
16
(
12
), p.
4668
.
2.
Angerer
,
M.
,
Djukow
,
M.
,
Riedl
,
K.
,
Gleis
,
S.
, and
Spliethoff
,
H.
,
2018
, “
Simulation of Cogeneration-Combined Cycle Plant Flexibilization by Thermochemical Energy Storage
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020909
.
3.
Mofidi
,
S. A. H.
, and
Udell
,
K. S.
,
2017
, “
Study of Heat and Mass Transfer in MgCl2/NH3 Thermochemical Batteries
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032005
.
4.
Uchino
,
T.
, and
Fushimi
,
C.
,
2021
, “
Fluidized Bed Reactor for Thermochemical Heat Storage Using Ca(OH)2/CaO to Absorb the Fluctuations of Electric Power Supplied by Variable Renewable Energy Sources: A Dynamic Model
,”
Chem. Eng. J.
,
419
, p.
129571
.
5.
Wongsuwan
,
W.
,
Kumar
,
S.
,
Neveu
,
P.
, and
Meunier
,
F.
,
2001
, “
A Review of Chemical Heat Pump Technology and Applications
,”
Appl. Therm. Eng.
,
21
(
15
), pp.
1489
1519
.
6.
Armatis
,
P. D.
,
Gupta
,
A.
,
Sabharwall
,
P.
,
Utgikar
,
V.
, and
Fronk
,
B. M.
,
2021
, “
A Chemical–Absorption Heat Pump for Utilization of Nuclear Power in High Temperature Industrial Processes
,”
Int. J. Energy Res.
,
45
(
10
), pp.
14612
14629
.
7.
Huang
,
H.-J.
,
Wu
,
G.-B.
,
Yang
,
J.
,
Dai
,
Y.-C.
,
Yuan
,
W.-K.
, and
Lu
,
H.-B.
,
2004
, “
Modeling of Gas-Solid Chemisorption in Chemical Heat Pumps
,”
Sep. Purif. Technol.
,
34
(
1–3
), pp.
191
200
.
8.
Arjmand
,
M.
,
Liu
,
L.
, and
Neretnieks
,
I.
,
2013
, “
Exergetic Efficiency of High-Temperature-Lift Chemical Heat Pump (CHP) Based on CaO/CO2 and CaO/H2O Working Pairs
,”
Int. J. Energy Res.
,
37
(
9
), pp.
1122
1131
.
9.
Ren
,
Y.
, and
Ogura
,
H.
,
2021
, “
Performance Evaluation of Off-Grid Solar Chemical Heat Pump for Cooling/Heating
,”
Sol. Energy
,
224
, pp.
1247
1259
.
10.
Hu
,
B.
,
Wu
,
D.
, and
Wang
,
R. Z.
,
2018
, “
Water Vapor Compression and Its Various Applications
,”
Renew. Sustain. Energy Rev.
,
98
, pp.
92
107
.
11.
Degueurce
,
B.
, and
Banquet
,
F.
,
1984
, “
Use of a Twin Screw Compressor for Steam Compression
,” 1984 International Symposium on the Large Scale Applications of Heat Pumps, pp.
335
337
.
12.
Kang
,
S. H.
,
Ryu
,
C.
, and
Ko
,
H. S.
,
2016
, “
Analysis of Performance for Centrifugal Steam Compressor
,”
J. Mech. Sci. Technol.
,
30
, pp.
5521
5527
.
13.
Shen
,
J.
,
He
,
Z.
, and
Xing
,
Z.
,
2014
, “
Design and Performance Analysis of High Temperature Heat Pump Using Water-Jet Screw Type Steam Compressor
,”
Refrig. Air Cond.
,
14
(
2
), pp.
95
98
.
14.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M.
, and
AlSadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042008
.
15.
Patel
,
H. H.
, and
Lakhera
,
V. J.
,
2020
, “
A Critical Review of the Experimental Studies Related to Twin Screw Compressors
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
234
(
1
), pp.
157
170
.
16.
El-Dessouky
,
H.
,
Ettouney
,
H.
,
Alatiqi
,
I.
, and
Al-Nuwaibit
,
G.
,
2002
, “
Evaluation of Steam Jet Ejectors
,”
Chem. Eng. Process.
,
41
(
6
), pp.
551
561
.
17.
Meyer
,
A. J.
,
Harms
,
T. M.
, and
Dobson
,
R. T.
,
2009
, “
Steam Jet Ejector Cooling Powered by Waste or Solar Heat
,”
Renew. Energy
,
34
(
1
), pp.
297
306
.
18.
Wu
,
H.
,
Liu
,
Z.
,
Han
,
B.
, and
Li
,
Y.
,
2014
, “
Numerical Investigation of the Influences of Mixing Chamber Geometries on Steam Ejector Performance
,”
Desalination
,
353
, pp.
15
20
.
19.
Chandra
,
V. V.
, and
Ahmed
,
M. R.
,
2014
, “
Experimental and Computational Studies on a Steam Jet Refrigeration System With Constant Area and Variable Area Ejectors
,”
Energy Convers. Manage.
,
79
, pp.
377
386
.
20.
Kus
,
T.
, and
Madejski
,
P.
,
2024
, “
Analysis of the Multiphase Flow With Condensation in the Two-Phase Ejector Condenser Using Computational Fluid Dynamics Modeling
,”
ASME J. Energy Resour. Technol.
,
146
(
3
), p.
030901
.
21.
Hassan
,
A. S.
, and
Darwish
,
M. A.
,
2014
, “
Performance of Thermal Vapor Compression
,”
Desalination
,
335
, pp.
41
46
.
22.
Boman
,
D. B.
,
Hughes
,
M. T.
,
Hughes
,
K. M.
, and
Garimella
,
S.
,
2022
, “
Forward Osmosis Absorption Heat Pumps for Space Conditioning and Graywater Purification: Cycle Development and Working Fluids Selection
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
2
), p.
021013
.
23.
Levy
,
A.
,
Jelinek
,
M.
, and
Borde
,
I.
,
2002
, “
Numerical Study on the Design Parameters of a Jet Ejector for Absorption Systems
,”
Appl. Energy
,
72
(
2
), pp.
467
478
.
24.
Farshi
,
L. G.
,
Mosaffa
,
A. H.
,
Ferreira
,
C. A. I.
, and
Rosen
,
M. A.
,
2014
, “
Thermodynamic Analysis and Comparison of Combined Ejector-Absorption and Single Effect Absorption Refrigeration Systems
,”
Appl. Energy
,
133
, pp.
335
346
.
25.
Majdi
,
H. S.
,
2016
, “
Performance Evaluation of Combined Ejector Libr/ H2O Absorption Cooling Cycle
,”
Case Stud. Therm. Eng.
,
7
, pp.
25
35
.
26.
Dias
,
J. M.
, and
Costa
,
V. A.
,
2018
, “
Adsorption Heat Pumps for Heating Applications: A Review of Current State, Literature Gaps and Development Challenges
,”
Renew. Sustain. Energy Rev.
,
98
, pp.
317
327
.
27.
Furukawa
,
H.
,
Gándara
,
F.
,
Zhang
,
Y. B.
,
Jiang
,
J.
,
Queen
,
W. L.
,
Hudson
,
M. R.
, and
Yaghi
,
O. M.
,
2014
, “
Water Adsorption in Porous Metal-Organic Frameworks and Related Materials
,”
J. Am. Chem. Soc.
,
136
(
11
), pp.
4369
4381
.
28.
Canivet
,
J.
,
Fateeva
,
A.
,
Guo
,
Y.
,
Coasne
,
B.
, and
Farrusseng
,
D.
,
2014
, “
Water Adsorption in MOFs: Fundamentals and Applications
,”
Chem. Soc. Rev.
,
43
(
16
), pp.
5594
5617
.
29.
Pesaran
,
A.
,
Lee
,
H.
,
Hwang
,
Y.
,
Radermacher
,
R.
, and
Chun
,
H. H.
,
2016
, “
Review Article: Numerical Simulation of Adsorption Heat Pumps
,”
Energy
,
100
, pp.
310
320
.
30.
Yang
,
B.
,
Yuan
,
W.
,
Gao
,
F.
, and
Guo
,
B.
,
2015
, “
A Review of Membrane-Based Air Dehumidification
,”
Indoor Built Environ.
,
24
(
1
), pp.
11
26
.
31.
Lin
,
B.
, and
Malmali
,
M.
,
2023
, “
Energy and Exergy Analysis of Multi-stage Vacuum Membrane Distillation Integrated With Mechanical Vapor Compression
,”
Separ. Purif. Technol.
,
306
(
Part B
), p.
122568
.
32.
Ibarra-Bahena
,
J.
,
Raman
,
S.
,
Galindo-Luna
,
Y. R.
,
Rodríguez-Martínez
,
A.
, and
Rivera
,
W.
,
2020
, “
Role of Membrane Technology in Absorption Heat Pumps: A Comprehensive Review
,”
Membranes
,
10
(
9
), pp.
1
28
.
33.
Lai
,
L.
,
Imai
,
T.
,
Umezu
,
M.
,
Ishii
,
M.
, and
Ogura
,
H.
,
2020
, “
Possibility of Calcium Oxide From Natural Limestone Including Impurities for Chemical Heat Pump
,”
Energies
,
13
(
4
), p.
803
.
34.
Richter
,
M.
,
Habermann
,
E. M.
,
Siebecke
,
E.
, and
Linder
,
M.
,
2018
, “
A Systematic Screening of Salt Hydrates as Materials for a Thermochemical Heat Transformer
,”
Thermochim. Acta
,
659
, pp.
136
150
.
35.
Mastronardo
,
E.
,
Bonaccorsi
,
L.
,
Kato
,
Y.
,
Piperopoulos
,
E.
, and
Milone
,
C.
,
2016
, “
Efficiency Improvement of Heat Storage Materials for MgO/H2O/Mg(OH)2 Chemical Heat Pumps
,”
Appl. Energy
,
162
, pp.
31
39
.
36.
Obermeier
,
J.
,
Müller
,
K.
, and
Arlt
,
W.
,
2015
, “
Thermodynamic Analysis of Chemical Heat Pumps
,”
Energy
,
88
, pp.
489
496
.
37.
André
,
L.
,
Abanades
,
S.
, and
Flamant
,
G.
,
2016
, “
Screening of Thermochemical Systems Based on Solid-Gas Reversible Reactions for High Temperature Solar Thermal Energy Storage
,”
Renew. Sustain. Energy Rev.
,
64
, pp.
703
715
.
38.
NRC
,
2020
, “Design Certification – NuScale US600,” https://www.nrc.gov/reactors/new-reactors/smr/licensing-activities/nuscale.html.
39.
Klein
,
S.
, and
Nellis
,
G.
,
2005
, “LiBrSSC (Aqueous Lithium Bromide) Property Routines”.
40.
Klein
,
S.
,
2020
, EES - Engineering Equation Solver. http://fchartsoftware.com.
41.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1994
, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results”.
You do not currently have access to this content.