Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The immediate need to mitigate climate change presents a chance to move civilization in the direction of a more sustainable future. A Stirling engine has multifuel capabilities such as biomass, solar thermal, and waste heat and hence can contribute significantly to the energy mix of fuel sources. The most common working fluids for Stirling engines are hydrogen, helium, and air, with air being the least expensive and safest. Studies analyzing Stirling engine performance with 3D CFD are limited, and even fewer use air as the working fluid. This research presents a novel 3D CFD analysis of the Ground Power Unit-3 (GPU-3) Stirling engine with air as the working fluid using ansys fluent. The fluid domain was modeled in SolidWorks and one-eighth of the geometry was used for simulation with realizable enhanced wall treatment (EWT) k–ε as an eddy viscosity model. On average, there was a reduction in power output by 50% when air was used as working fluid against helium as working fluid. Engine's power output decreases as the engine's speed increases. The impinging effect contributes to vortex formation and temperature variation within the engine components was nonsinusoidal, this is in line with similar studies performed on GPU-3 Stirling engine.

References

1.
Lund
,
H.
,
2007
, “
Renewable Energy Strategies for Sustainable Development
,”
Energy
,
32
(
6
), pp.
912
919
.
2.
Singer
,
S.
,
Denruyter
,
J.-P.
, and
Yener
,
D.
,
2017
,
The Energy Report: 100% Renewable Energy by 2050
,
Springer
,
Cham
, pp.
379
383
.
3.
Wojuola
,
R. N.
, and
Alant
,
B. P.
,
2017
, “
Public Perceptions About Renewable Energy Technologies in Nigeria
,”
Afr. J. Sci. Technol. Innov. Dev.
,
9
(
4
), pp.
399
409
.
4.
Renewables – Energy System – IEA
, “
Share of Renewable Electricity Generation by Technology, 2000–2028
,” https://www.iea.org/energy-system/renewables, Accessed May 20, 2024.
5.
Tareq Chowdhury
,
M.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
6.
Habib
,
M. A.
,
Haque
,
M. A.
,
Imteyaz
,
B.
,
Hussain
,
M.
, and
Abdelnaby
,
M. M.
,
2023
, “
Potential of Integrating Solar Energy Into Systems of Thermal Power Generation, Cooling-Refrigeration, Hydrogen Production, and Carbon Capture
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
110801
.
7.
Singh
,
V.
, and
Kumar
,
A.
,
2024
, “
A Systematic and Comprehensive Review on 2-D and 3-D Numerical Modelling of Stirling Engine
,”
Arch. Comput. Meth. Eng.
,
31
(
6
), pp.
3255
3266
.
8.
Sandoval
,
O. R.
,
Caetano
,
B. C.
,
Borges
,
M. U.
,
García
,
J. J.
, and
Valle
,
R. M.
,
2019
, “
Modelling, Simulation and Thermal Analysis of a Solar Dish/Stirling System: A Case Study in Natal, Brazil
,”
Energy Convers. Manage.
,
181
, pp.
189
201
.
9.
Singh
,
U. R.
, and
Kumar
,
A.
,
2018
, “
Review on Solar Stirling Engine: Development and Performance
,”
Therm. Sci. Eng. Prog.
,
8
, pp.
244
256
.
10.
Zayed
,
M. E.
,
Zhao
,
J.
,
Elsheikh
,
A. H.
,
Li
,
W.
,
Sadek
,
S.
, and
Aboelmaaref
,
M. M.
,
2021
, “
A Comprehensive Review on Dish/Stirling Concentrated Solar Power Systems: Design, Optical and Geometrical Analyses, Thermal Performance Assessment, and Applications
,”
J. Cleaner Prod.
,
283
, p.
124664
.
11.
Bataineh
,
K.
,
2022
, “
Performance Evaluation of a Stand-Alone Solar Dish Stirling System for Off–Grid Electrification
,”
Energy Sources, Part A
,
44
(
1
), pp.
1208
1226
.
12.
Geng
,
D.
,
Cui
,
J.
, and
Fan
,
L.
,
2021
, “
Performance Investigation of a Reverse Osmosis Desalination System Powered by Solar Dish-Stirling Engine
,”
Energy Rep.
,
7
, pp.
3844
3856
.
13.
Hassan
,
M.
,
Tariq
,
H. A.
,
Anwar
,
M.
,
Khan
,
T. I.
, and
Israr
,
A.
,
2021
, “
Design and Fabrication of Stirling Engine for Solar Power Application
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
111302
.
14.
Domenikos
,
G. R.
,
Rogdakis
,
E.
, and
Koronaki
,
I.
,
2023
, “
Computational Analysis, Three-Dimensional Simulation, and Optimization of Superfluid Stirling Cryocooler
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
111701
.
15.
Walker
,
G.
,
1973
, “
The Stirling Engine
,”
Sci. Am.
,
229
(
2
), pp.
80
87
.
16.
Walker
,
G.
, and
Senft
,
J. R.
,
1985
,
Free-Piston Stirling Engines
,
Springer
,
Berlin
, pp.
23
99
.
17.
Walker
,
G.
,
1979
, “
Elementary Design Guidelines For Stirling Engines
,”
Proceedings of the 14th Intersociety Energy Conversion Engineering Conference
,
Boston, MA
,
Aug. 5–10
, pp.
1066
1068
.
18.
Ben-Mansour
,
R.
,
Abuelyamen
,
A.
, and
Mokheimer
,
E. M. A.
,
2017
, “
CFD Analysis of Radiation Impact on Stirling Engine Performance
,”
Energy Convers. Manage.
,
152
, pp.
354
365
.
19.
Beale
,
W. T.
,
1969
, “Free Piston Stirling Engines – Some Model Tests and Simulations,” SAE Technical Papers.
20.
Iwamoto
,
S.
,
Hirata
,
K.
, and
Toda
,
F.
,
2001
, “
Performance of Stirling Engines. Arranging Method of Experimental Results and Performance Prediction
,”
JSME Int. J. Ser. B
,
44
(
1
), pp.
140
147
.
21.
Babaelahi
,
M.
, and
Sayyaadi
,
H.
,
2015
, “
A New Thermal Model Based on Polytropic Numerical Simulation of Stirling Engines
,”
Appl. Energy
,
141
, pp.
143
159
.
22.
Bataineh
,
K. M.
, and
Maqableh
,
M. F.
,
2022
, “
A New Numerical Thermodynamic Model for a Beta-Type Stirling Engine With a Rhombic Drive
,”
Therm. Sci. Eng. Prog.
,
28
, p.
101071
.
23.
Yang
,
C.
,
Zhuang
,
N.
,
Du
,
W.
,
Zhao
,
H.
, and
Tang
,
X.
,
2022
, “
Modified Stirling Cycle Thermodynamic Model IPD-MSM and Its Application
,”
Energy Convers. Manage.
,
260
, p.
115630
.
24.
Qiu
,
H.
,
Wang
,
K.
,
Yu
,
P.
,
Ni
,
M.
, and
Xiao
,
G.
,
2021
, “
A Third-Order Numerical Model and Transient Characterization of a β-Type Stirling Engine
,”
Energy
,
222
, p.
119973
.
25.
Urieli
,
I.
,
Rallis
,
C. J.
,
Berchowitz
,
D. M.
,
Urieli
,
I.
,
Rallis
,
C. J.
, and
Berchowitz
,
D. M.
,
1977
, “
Computer Simulation of Stirling Cycle Machines
,”
12th IECEC
,
Washington, DC
,
Aug. 28–Sept. 2
.
26.
Aksoy
,
F.
,
Solmaz
,
H.
,
Karabulut
,
H.
,
Cinar
,
C.
,
Ozgoren
,
Y. O.
, and
Polat
,
S.
,
2016
, “
A Thermodynamic Approach to Compare the Performance of Rhombic-Drive and Crank-Drive Mechanisms for a Beta-Type Stirling Engine
,”
Appl. Therm. Eng.
,
93
, pp.
359
367
.
27.
Mahkamov
,
K.
,
2006
, “
Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
203
215
.
28.
El-Ghafour
,
S. A.
,
El-Ghandour
,
M.
, and
Mikhael
,
N. N.
,
2019
, “
Three-Dimensional Computational Fluid Dynamics Simulation of Stirling Engine
,”
Energy Convers. Manage.
,
180
, pp.
533
549
.
29.
Rogdakis
,
E.
,
Bitsikas
,
P.
,
Dogkas
,
G.
, and
Antonakos
,
G.
,
2019
, “
Three-Dimensional CFD Study of a β-Type Stirling Engine
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
302
316
.
30.
Cheng
,
C.
, and
Phung
,
D.
,
2021
, “
Numerical and Experimental Study of a Compact 100-W-Class Β-Type Stirling Engine
,”
Int. J. Energy Res.
,
45
(
5
), pp.
6784
6799
.
31.
Martini
,
W.
,
1983
,
Stirling Engine Design Manual
,
National Aeronautics and Space Administration, Lewis Research Centre
,
Cleveland, OH
.
32.
Meijer
,
R. J.
,
1960
, “
The Philips Stirling Thermal Engine: Analysis of the Rhombic Drive Mechanism and Efficiency Measurements
,” PhD. Thesis, Mechanical, Maritime and Materials Engineering, TU Delft, Netherlands.
33.
Ansys
,
2016
,
ANSYS FLUENT Theory Guide
,
ANSYS Inc
,
Canonsburg, PA
.
34.
Ansys
,
2022
,
ANSYS FLUENT User's Guide
,
ANSYS Inc
,
Canonsburg, PA
.
35.
Walker
,
G.
, and
Vasishta
,
V.
,
1971
, “
Heat-Transfer and Flow-Friction Characteristics of Dense-Mesh Wire-Screen Stirling-Cycle Regenerators
,”
Adv. Cryog. Eng.
, pp.
324
332
.
36.
Argyropoulos
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.
37.
Tew
,
R.
,
Jefferies
,
K.
, and
Miao
,
D.
,
1978
,
A Stirling Engine Computer Model for Performance Calculations
,
NASA LRC
,
Cleveland, OH
.
You do not currently have access to this content.