Abstract

Energy and exergy analyses were performed to assess the effect of the internal heat exchanger (IHX) position on the performance characteristics of a dual-evaporator refrigeration system using an ejector as an expansion device. Three positions were tested. The first one generates a superheating at the suction of the compressor, the second generates a superheating of the secondary fluid at the inlet of the ejector, and the third generates a superheating of the primary fluid at the inlet of the motive nozzle. The results of the simulation show that it is the second position that leads to the best increases in performance characteristics of the refrigeration system. With improvements in coefficient of performance (COP), volumetric cooling capacity, exergy efficiency, and refrigeration cooling capacity of 9.38%, 9.58%, 5.18%, and 19.12%, respectively, R1234yf is the best fluid. However, the use of IHX is not recommended for R717, especially in position 1. The results also show that the contribution of IHX to increasing system performance is greater the higher the degree of subcooling and the lower the IHX effectiveness. It was also noted that system performance increases with condensing and refrigeration temperatures and decreases with freezing temperature.

References

1.
Aktemur
,
C.
, and
Ozturk
,
I. T.
,
2021
, “
Energy and Exergy Analysis of a Subcritical Cascade Refrigeration System With Internal Heat Exchangers Using Environmentally Friendly Refrigerants
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102103
.
2.
Hou
,
Y.
,
Wu
,
W.
,
Li
,
Z.
,
Yu
,
X.
, and
Zeng
,
T.
,
2023
, “
Effect of Drying Air Supply Temperature and Internal Heat Exchanger on Performance of a Novel Closed-Loop Transcritical CO2 Air Source Heat Pump Drying System
,”
Renewable Energy
,
219
, pp.
1
9
.
3.
Oruç
,
V.
,
Devecioglu
,
A. G.
, and
Ilhan
,
D. B.
,
2024
, “
Retrofit of an Internal Heat Exchanger in a R404A Refrigeration System Using R452A: Experimental Assessment on the Energy Efficiency and CO2 Emissions
,”
Next Energy
,
3
, pp.
1
9
.
4.
Domanski
,
P.
,
Didion
,
D.
, and
Doyle
,
J.
,
1994
, “
Evaluation of Suction-Line/Liquid-Line Heat Exchange in the Refrigeration Cycle
,”
Int. J. Refrig.
,
17
(
7
), pp.
487
493
.
5.
Klein
,
S. A.
,
Reindl
,
D. T.
, and
Brownell
,
K.
,
2000
, “
Refrigeration System Performance Using Liquid Suction Heat Exchangers
,”
Int. J. Refrig.
,
23
(
8
), pp.
588
596
.
6.
Otón-Martínez
,
R. A.
,
Illán-Gómez
,
F.
,
García-Cascales
,
J. R.
,
Velasco
,
F. J. S.
, and
Haddouche
,
M. R.
,
2022
, “
Impact of an Internal Heat Exchanger on a Transcritical CO2 Heat Pump Under Optimal Pressure Conditions: Optimal-Pressure Performance of CO2 Heat Pump with IHX
,”
Appl. Thermal. Eng.
,
215
, pp.
1
12
.
7.
Aprea
,
C.
,
Ascani
,
M.
, and
De Rossi
,
F.
,
1999
, “
A Criterion for Predicting the Possible Advantage of Adopting a Suction/Liquid Heat Exchanger in Refrigerating System
,”
Appl. Therm. Eng.
,
19
(
4
), pp.
329
336
.
8.
Mastrullo
,
R.
,
Mauro
,
A. W.
,
Tino
,
S.
, and
Vanoli
,
G. P.
,
2007
, “
A Chart for Predicting the Possible Advantage of Adopting a Suction/Liquid Heat Exchanger in Refrigerating System
,”
Appl. Therm. Eng.
,
27
(
14–15
), pp.
2443
2448
.
9.
Desai
,
A. D.
,
Sapali
,
S. N.
, and
Garikipati
,
P. V.
,
2011
, “
Development of Energy Efficient R-134a Automotive Air Conditioning System Using Internal Heat Exchanger
,”
Proceedings of the World Congress on Engineering, (WCE)
,
London, UK
,
July 6–8
, Vol. 3, pp.
2250
2255
.
10.
Cabello
,
R.
,
Torrella
,
E.
,
Llopis
,
R.
,
Sánchez
,
D.
, and
Larumbe
,
J. A.
,
2013
, “
Energy Influence of the IHX with R22 Drop-in and Long-Term Substitutes in Refrigeration Plants
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
260
267
.
11.
Navarro-Esbrí
,
J.
,
Molés
,
F.
, and
Barragán-Cervera
,
Á
,
2013
, “
Experimental Analysis of the Internal Heat Exchanger Influence on a Vapor Compression System Performance Working With R1234yf as a Drop-in Replacement for R134a
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
153
161
.
12.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Barragán-Cervera
,
Á
,
Molés
,
F.
, and
Peris
,
B.
,
2015
, “
Drop-in of an Internal Heat Exchanger in a Vapor Compression System Using R1234ze(E) and R450A as Alternatives for R134a
,”
Energy
,
90
(
2
), pp.
1636
1644
.
13.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Mendoza-Miranda
,
J. M.
, and
Peris
,
B.
,
2017
, “
Experimental Evaluation of System Modifications to Increase R1234ze(E) Cooling Capacity
,”
Appl. Therm. Eng.
,
111
, pp.
786
792
.
14.
Mota-Babiloni
,
A.
,
Navarro-Esbrí
,
J.
,
Pascual-Miralles
,
V.
,
Barragán-Cervera
,
Á
, and
Maiorino
,
A.
,
2019
, “
Experimental Influence of an Internal Heat Exchanger (IHX) Using R513A and R134a in a Vapor Compression System
,”
Appl. Therm. Eng.
,
147
, pp.
482
491
.
15.
Rodríguez-Muñoz
,
J. L.
,
Pérez-García
,
V.
,
Belman-Flores
,
J. M.
,
Ituna-Yudonago
,
J. F.
, and
Gallegos-Muñoz
,
A.
,
2018
, “
Energy and Exergy Performance of the IHX Position in Ejector Expansion Refrigeration Systems
,”
Int. J. Refrig.
,
93
, pp.
122
131
.
16.
Zhang
,
F. Z.
,
Jiang
,
P. X.
,
Lin
,
Y. S.
, and
Zhang
,
Y. W.
,
2011
, “
Efficiencies of Subcritical and Transcritical CO2 Inverse Cycles With and Without an Internal Heat Exchanger
,”
Appl. Therm. Eng.
,
31
(
4
), pp.
432
438
.
17.
Llopis
,
R.
,
Sanz-Kock
,
C.
,
Cabello
,
R.
,
Sánchez
,
D.
, and
Torrella
,
E.
,
2015
, “
Experimental Evaluation of an Internal Heat Exchanger in a CO2 Subcritical Refrigeration Cycle With Gas-Cooler
,”
Appl. Therm. Eng.
,
80
, pp.
31
41
.
18.
Llopis
,
R.
,
Sanz-Kock
,
C.
,
Cabello
,
R.
,
Sánchez
,
D.
,
Nebot-Andrés
,
L.
, and
Catalán-Gil
,
J.
,
2016
, “
Effects Caused by the Internal Heat Exchanger at the Low Temperature Cycle in a Cascade Refrigeration Plant
,”
Appl. Therm. Eng.
,
103
, pp.
1077
1086
.
19.
Cabello
,
R.
,
Andreu-Nacher
,
A.
,
Sanchez
,
D.
, and
Larrondo
,
R.
,
2024
, “
Energy Influence of the Internal Heat Exchangers Placement in a Cascade Refrigeration Plant. A Theoretical and Experimental Analysis
,”
Appl. Thermal Eng.
,
244
, pp.
1
14
.
20.
Robinson
,
D. M.
, and
Groll
,
E. A.
,
1998
, “
Efficiencies of Transcritical CO2 Cycles With and Without an Expansion Turbine
,”
Int. J. Refrig.
,
21
(
7
), pp.
577
589
.
21.
Chen
,
Y.
, and
Gu
,
J.
,
2005
, “
The Optimum High Pressure for CO2 Transcritical Refrigeration Systems With Internal Heat Exchangers
,”
Int. J. Refrig.
,
28
(
8
), pp.
1238
1249
.
22.
Aprea
,
C.
, and
Maiorino
,
A.
,
2008
, “
An Experimental Evaluation of the Transcritical CO2 Refrigerator Performances Using an Internal Heat Exchanger
,”
Int. J. Refrig.
,
31
(
6
), pp.
1006
1011
.
23.
Cavallini
,
A.
,
Corradi
,
M.
, and
Fornasieri
,
E.
,
2007
, “
Experimental Investigation on the Effect of the Internal Heat Exchanger and Intercooler Effectiveness of the Energy Performance of a Two-Stage Transcritical Carbon Dioxde Cycle
,”
Proceedings of the Twenty-Second International Congress of Refrigeration
,
Beijing, China
,
Aug. 21–26
.
24.
Rigola
,
J.
,
Ablanque
,
N.
,
Pérez-Segarra
,
C. D.
, and
Oliva
,
A.
,
2010
, “
Numerical Simulation and Experimental Validation of Internal Heat Exchanger Influence on CO2 Transcritical Cycle Performance
,”
Int. J. Refrig.
,
33
(
4
), pp.
664
674
.
25.
Boumaraf
,
L.
,
Haberschill
,
P.
, and
Lallemand
,
A.
,
2014
, “
Investigation of a Novel Ejector Expansion Refrigeration System Using the Working Fluid R134a and Its Potential Substitute R1234yf
,”
Int. J. Refrig.
,
45
, pp.
148
159
.
26.
Khadraoui
,
R.
,
Boumaraf
,
L.
, and
Haberschill
,
P.
,
2023
, “
Effect of an Internal Heat Exchanger on the Performances of a Double Evaporator Ejector Refrigeration Cycle
,”
Fluid Dyn. Mater. Process.
,
19
(
5
), pp.
1115
1128
.
27.
Suresh
,
R.
,
Prakash
,
R.
,
Praveen
,
V.
, and
Datta
,
S. P.
,
2024
, “
Numerically Optimized Ejector Geometry for Ejector Refrigeration Systems With Low-Global Warming Potential Working Fluids
,”
ASME J. Energy Resour. Technol.
,
146
(
10
), p.
101702
.
28.
Modi
,
N.
,
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2019
, “
Advanced Exergetic Assessment of a Vapor Compression Cycle With Alternative Refrigerants
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092002
.
29.
Selvaraju
,
A.
, and
Mani
,
A.
,
2004
, “
Analysis of a Vapor Ejector Refrigeration System Witsh Environment Friendly Refrigerants
,”
Int. J. Therm. Sci.
,
43
(
9
), pp.
915
921
.
30.
Alexis
,
G. K.
, and
Karayiannis
,
E. K.
,
2005
, “
A Solar Cooling System Using Refrigerant R134a in the Athena Area
,”
Renewable Energ.
,
30
(
9
), pp.
1457
1469
.
31.
Garcia
,
J. C. S.
, and
Berana
,
M. S.
,
2017
, “
Theoretical Evaluation of the Effect of Internal Heat Exchanger in Standard Vapor Compression and Compressor-Driven Ejector Refrigeration Systems
,”
Proceedings of the World Congress on Engineering, WCE
,
London, UK
,
July 5–7
, pp.
1
6
.
32.
Joseph
,
D. D.
, and
Yang
,
B. H.
,
2010
, “
Friction Factor Correlations for Laminar, Transition and Turbulent Flow in Smooth Pipes
,”
Phys. D: Nonlinear Phenom.
,
239
(
14
), pp.
1318
1328
.
33.
Brunin
,
O.
,
Feidt
,
M.
, and
Hivet
,
B.
,
1997
, “
Comparison of the Working Domains of Some Compression Heat Pumps and a Compression-Absorption Heat Pump
,”
Int. J. Refrig.
,
20
(
5
), pp.
308
318
.
34.
Lee
,
W. H.
,
Kim
,
Y. J.
,
Kim
,
M. S.
, and
Cho
,
K. S.
,
2000
, “
Experimental Study on the Performance of Dual-Evaporator Refrigeration System With an Ejector
,”
Proceedings of the International Refrigeration and Air Conditioning Conference
, Paper No. 503.
35.
Pottker
,
G.
, and
Hrnjak
,
P.
,
2015
, “
Effect of the Condenser Subcooling on the Performance of Vapor Compression Systems
,”
Int. J. Refrig.
,
50
, pp.
156
164
.
You do not currently have access to this content.