Graphical Abstract Figure

Evolution of the first-order index for Pmax, CA5, CA50, and CA90

Graphical Abstract Figure

Evolution of the first-order index for Pmax, CA5, CA50, and CA90

Close modal

Abstract

With the increasing prominence of energy and environmental issues, research in the field of internal combustion engines is becoming more and more refined. Engines are affected by the coupling of many factors, and it is necessary to decouple and quantify the impact of inputs on the objectives. In this paper, the effect of engine configuration parameters, operating conditions, and fuel parameters on fuel efficiency and emissions was investigated based on a support vector machine coupling Sobol method. The results of Sobol sensitivity analysis show that the most sensitive parameters for both brake specific fuel consumption and carbon monoxide emission are excess air ratio, total hydrocarbon emission and nitrogen oxides emission, engine load, and intake pressure; the first-order indices are 0.72, 0.27, 0.17, and 0.20, respectively. The most sensitive combustion parameters are maximum pressure in the cylinder, indicated mean effective pressure, maximum temperature in the cylinder, and high-temperature range, and the first-order indices are 0.40, 0.25, 0.39, and 0.57, respectively. It can be summarized through all the Sobol indices that, on the one hand, some input parameters, such as excess air ratio, affect fuel efficiency and emissions through the combustion process and, on the other hand, such as oxygen mass fraction directly affects carbon monoxide emission and total hydrocarbon emission by affecting the oxygen concentration in the cylinder. Sensitivity analysis based on the Sobol method coupling support vector machine was proved to be feasible and will provide valuable guidance for the optimization of internal combustion engines.

References

1.
Singh
,
A.
,
Choudhary
,
A. K.
, and
Sinha
,
S.
,
2023
, “
An Investigation of Performance and Emissions of Diesel Engine Using Heterogeneous Catalyst Jatropha Biodiesel: A Sustainable Model Using Taguchi and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022301
.
2.
Jia
,
Z.
, and
Koopmans
,
L.
,
2022
, “
A Hybrid Approach Using Design of Experiment and Artificial Neural Network in a Camless Heavy-Duty Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122302
.
3.
Zhang
,
M.
,
Hong
,
W.
,
Xie
,
F.
,
Su
,
Y.
,
Liu
,
H.
, and
Zhou
,
S.
,
2018
, “
Combustion, Performance and Particulate Matter Emissions Analysis of Operating Parameters on a GDI Engine by Traditional Experimental Investigation and Taguchi Method
,”
Energy Convers. Manage.
,
164
, pp.
344
352
.
4.
Ganapathy
,
T.
,
Murugesan
,
K.
, and
Gakkhar
,
R. P.
,
2009
, “
Performance Optimization of Jatropha Biodiesel Engine Model Using Taguchi Approach
,”
Appl. Energy
,
86
(
11
), pp.
2476
2486
.
5.
Gul
,
M.
,
Shah
,
A. N.
,
Jamal
,
Y.
, and
Masood
,
I.
,
2016
, “
Multi-variable Optimization of Diesel Engine Fuelled With Biodiesel Using Grey-Taguchi Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
2
), pp.
621
632
.
6.
Cimbala
,
J. M.
,
2014
,
Taguchi Orthogonal Arrays
,
Pennsylvania State University
,
Philadelphia, PA
, pp.
1
3
.
7.
Venkatanarayana
,
B.
, and
Ratnam
,
C.
,
2019
, “
Selection of Optimal Performance Parameters of DI Diesel Engine Using Taguchi Approach
,”
Biofuels
,
10
(
4
), pp.
503
510
.
8.
Sathish Kumar
,
T.
,
Ashok
,
B.
, and
Saravanan
,
B.
,
2023
, “
Calibration of Flex-Fuel Operating Parameters Using Grey Relational Analysis to Enhance the Output Characteristics of Ethanol Powered Direct Injection SI Engine
,”
Energy
,
281
, p.
128340
.
9.
Gad
,
M. S.
,
El-Shafay
,
A. S.
,
Alqsair
,
U. F.
,
Ağbulut
,
Ü.
, and
Attia
,
E.-A.
,
2023
, “
Multi-objective Optimization Based Grey Relational Analysis and Investigation of Using the Waste Animal Fat Biodiesel on the Engine Characteristics
,”
Fuel
,
343
, p.
127950
.
10.
Tan
,
Y.
,
Zheng
,
P.
,
Jiaqiang
,
E.
,
Han
,
D.
, and
Feng
,
C.
,
2022
, “
Effects of Inlet Velocity and Structure Parameters on the Performance of a Rotary Diesel Particulate Filter for Truck Diesel Engine Based on Fuzzy Grey Relational Analysis
,”
Chemosphere
,
307
, p.
135843
.
11.
Langstaff
,
J.
,
Glen
,
G.
,
Holder
,
C.
,
Graham
,
S.
, and
Isaacs
,
K.
,
2022
, “
A Sensitivity Analysis of a Human Exposure Model Using the Sobol Method
,”
Stoch. Environ. Res Risk Assess
,
36
(
11
), pp.
3945
3960
.
12.
Van Hove
,
M. Y. C.
,
Delghust
,
M.
, and
Laverge
,
J.
,
2023
, “
Uncertainty and Sensitivity Analysis of Building-Stock Energy Models: Sampling Procedure, Stock Size and Sobol’ Convergence
,”
J. Build. Perform. Simul.
,
16
(
6
), pp.
749
771
.
13.
Li
,
G.
,
Teng
,
Y.
,
Xu
,
T.
,
Wang
,
Z.
, and
Ding
,
S.
2023
, “
Global Sensitivity Analysis Method for Model-Based System Safety Assessment on Aviation Piston Engine
,”
ASME International Mechanical Engineering Congress and Exposition
,
New Orleans, LA
,
Oct. 29–Nov. 2
,
American Society of Mechanical Engineers
, Vol. 87707, p.
V013T15A015
.
14.
Contino
,
F.
,
Masurier
,
J. B.
,
Foucher
,
F.
,
Lucchini
,
T.
,
D’Errico
,
G.
, and
Dagaut
,
P.
,
2014
, “
CFD Simulations Using the TDAC Method to Model Iso-Octane Combustion for a Large Range of Ozone Seeding and Temperature Conditions in a Single Cylinder HCCI Engine
,”
Fuel
,
137
, pp.
179
184
.
15.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
Yu
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
.
16.
Pei
,
Y.
,
Davis
,
M. J.
,
Pickett
,
L. M.
, and
Som
,
S.
,
2015
, “
Engine Combustion Network (ECN): Global Sensitivity Analysis of Spray A for Different Combustion Vessels
,”
Combust. Flame
,
162
(
6
), pp.
2337
2347
.
17.
Sharifi
,
A.
,
Ahmadi
,
M.
,
Badfar
,
H.
, and
Hosseini
,
M.
,
2019
, “
Modeling and Sensitivity Analysis of NOx Emissions and Mechanical Efficiency for Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
26
(
24
), pp.
25190
25207
.
18.
Kioutsioukis
,
I.
,
Tarantola
,
S.
,
Saltelli
,
A.
, and
Gatelli
,
D.
,
2004
, “
Uncertainty and Global Sensitivity Analysis of Road Transport Emission Estimates
,”
Atmos. Environ.
,
38
(
38
), pp.
6609
6620
.
19.
Ebert
,
N.
,
Goos
,
J. C.
,
Kirschbaum
,
F.
,
Yildiz
,
E.
, and
Koch
,
T.
,
2020
, “
Methods of Sensitivity Analysis in Model-Based Calibration
,”
Autom. Engine Technol.
,
5
(
1–2
), pp.
45
56
.
20.
Tariq
,
S.
, and
Dan
,
S.
,
2023
, “
Sensitivity Analysis and Feature Selection for Drilling-Oriented Models
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
123201
.
21.
McRae
,
G. J.
,
Tilden
,
J. W.
, and
Seinfeld
,
J. H.
,
1982
, “
Global Sensitivity Analysis—A Computational Implementation of the Fourier Amplitude Sensitivity Test (FAST)
,”
Comput. Chem. Eng.
,
6
(
1
), pp.
15
25
.
22.
Christopher Frey
,
H.
, and
Patil
,
S. R.
,
2002
, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
,
22
(
3
), pp.
553
578
.
23.
Iooss
,
B.
, and
Lemaître
,
P.
,
2015
, “A Review on Global Sensitivity Analysis Methods,”
Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications
, Vol. 59, pp.
101
122
.
24.
Nossent
,
J.
,
Elsen
,
P.
, and
Bauwens
,
W.
,
2011
, “
Sobol' sensitivity Analysis of a Complex Environmental Model
,”
Environ. Modell. Softw.
,
26
(
12
), pp.
1515
1525
.
25.
Ten Broeke
,
G.
,
Van Voorn
,
G.
, and
Ligtenberg
,
A.
,
2016
, “
Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?
,”
J. Artif. Soc. Social Simul.
,
19
(
1
), p.
5
.
26.
Suleymanov
,
V.
,
Gamal
,
H.
,
Elkatatny
,
S.
,
Glatz
,
G.
, and
Abdulraheem
,
A.
,
2022
, “
Machine Learning Models for Acoustic Data Prediction During Drilling Composite Lithology Formations
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
103201
.
27.
Sahoo
,
S.
,
Kumar
,
V. N. S. P.
, and
Srivastava
,
D. K.
,
2022
, “
Quantitative Analysis of Engine Parameters of a Variable Compression Ratio CNG Engine Using Machine Learning
,”
Fuel
,
311
, p.
122587
.
28.
Hanuschkin
,
A.
,
Schober
,
S.
,
Bode
,
J.
,
Schorr
,
J.
,
Böhm
B.
,
Krüger
,
C.
, and
Peters
,
S.
,
2021
, “
Machine Learning-Based Analysis of In-Cylinder Flow Fields to Predict Combustion Engine Performance
,”
Int. J. Eng. Res.
,
22
(
1
), pp.
257
272
.
29.
Hearst
,
M. A.
,
Dumais
,
S. T.
,
Osuna
,
E.
,
Platt
,
J.
, and
Scholkopf
,
B.
,
1998
, “
Support Vector Machines
,”
IEEE Intell. Syst. Appl.
,
13
(
4
), pp.
18
28
.
30.
Suthaharan
,
S.
,
2016
, “
Machine Learning Models and Algorithms for Big Data Classification
,”
Integr. Ser. Inf. Syst
,
36
, pp.
1
12
.
31.
Steinwart
,
I.
, and
Christmann
,
A.
,
2008
,
Support Vector Machines
,
Springer Science & Business Media
,
Berlin, Germany
.
32.
Ghanbari
,
M.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mamat
,
R.
,
Noor
,
M. M.
and
Moosavian
,
A.
,
2015
, “
Support Vector Machine to Predict Diesel Engine Performance and Emission Parameters Fueled With Nano-particles Additive to Diesel Fuel
,”
IOP Conference Series: Materials Science and Engineering
,
Kuantan, Pahang, Malaysia
,
Aug. 18–19
,
IOP Publishing
, Vol. 100, No. 1, p.
012069
.
33.
Li
,
Y.
,
Zhou
,
S.
,
Liu
,
J.
,
Tong
,
J.
,
Dang
,
J.
,
Yang
,
F.
, and
Ouyang
,
M.
,
2023
, “
Multi-objective Optimization of the Atkinson Cycle Gasoline Engine Using NSGA Ⅲ Coupled With Support Vector Machine and Back-Propagation Algorithm
,”
Energy
,
262
, p.
125262
.
34.
Wong
,
K. I.
,
Wong
,
P. K.
,
Cheung
,
C. S.
, and
Vong
,
C.. M.
,
2013
, “
Modelling of Diesel Engine Performance Using Advanced Machine Learning Methods Under Scarce and Exponential Data Set
,”
Appl. Soft Comput.
,
13
(
11
), pp.
4428
4441
.
35.
Li
,
H.
,
2023
, “Support Vector Machine,”
Machine Learning Methods
,
Springer Nature Singapore
,
Singapore
, pp.
127
177
.
36.
Wang
,
H.
,
Ji
,
C.
,
Yang
,
J.
,
Ge
,
Y.
, and
Wang
,
S.
,
2023
, “
Implementation of a Novel Dual-Layer Machine Learning Structure for Predicting the Intake Characteristics of a Side-Ported Wankel Rotary Engine
,”
Aerosp. Sci. Technol.
,
132
, p.
108042
.
37.
Lin
,
S. W.
,
Ying
,
K. C.
,
Chen
,
S. C.
, and
Lee
,
Z.-J.
,
2008
, “
Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines
,”
Expert Syst. Appl.
,
35
(
4
), pp.
1817
1824
.
38.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
39.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T. H.
,
Campolongo,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley & Sons
,
Hoboken, NJ
.
40.
Thakur
,
A. K.
,
Kaviti
,
A. K.
,
Mehra
,
R.
, and
Mer
,
K. K. S.
,
2017
, “
Progress in Performance Analysis of Ethanol-Gasoline Blends on SI Engine
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
324
340
.
41.
Şöhret
,
Y.
, and
Gürbüz
,
H.
,
2021
, “
A Comparison of Gasoline, Liquid Petroleum Gas, and Hydrogen Utilization in an Spark Ignition Engine in Terms of Environmental and Economic Indicators
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052301
.
42.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
43.
Iijima
,
T.
, and
Takeno
,
T.
,
1986
, “
Effects of Temperature and Pressure on Burning Velocity
,”
Combust. Flame
,
65
(
1
), pp.
35
43
.
44.
Gore
,
M.
,
Nonavinakere Vinod
,
K.
, and
Fang
,
T.
,
2023
, “
Experimental Investigation of Gaseous Mixtures of Ethane, Methane, and Carbon Dioxide as an Alternative to Conventional Fuel in Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
032301
.
You do not currently have access to this content.