Abstract

Replacing diesel with biodiesel generally results in a decrease in exhaust emissions like carbon monoxide, hydrocarbon, particulate matter, and carbon dioxide. However, nitrogen oxide emissions show increasing trends. On the other hand, a decrease in nitrogen oxide emissions has been found using various additives with diesel and biodiesel blends. In this work, the experiments are carried out on diesel, B30 (70% v/v diesel + 30% v/v biodiesel), and the B30CL1000 (70% v/v diesel + 30% v/v biodiesel + 1000 ppm clove oil) to evaluate the performance and emissions of diesel engine. The response surface methodology-based approach has been applied to evaluate the effect of different engine operating parameters on engine performance and emission while fueled with the B30CL1000 fuel blend. Further, the analytic hierarchy process–weighted aggregated sum product assessment method has been applied to identify the optimal setting of the parameters and rank the optimal engine operating range for the B30CL1000 blend. From the results, it was elicited that the accumulation of 1000 ppm of antioxidant (clove oil) additives in the B30 blend resulted in a reduction in the brake-specific fuel consumption by up to 11.5% at higher loads. Brake thermal efficiency increased by 16.3% at low load conditions for the B30CL1000 blend. Then the B30CL1000 blend showed a 2% drop in carbon monoxide emission at higher loads, and the decreased nitrogen oxide emission for the B30CL1000 blend has also been reported as 12% at low loads and 2% at higher loads, which follows a similar trend as exhaust gas temperature. The fifth experimental run having compression ratio (CR) of 17, exhaust gas recirculation (EGR) of 0%, and load of 12 kg has been ranked as 1.

References

1.
Perera
,
F.
,
2018
, “
Pollution From Fossil-Fuel Combustion Is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist
,”
Int. J. Environ. Res. Public Health
,
15
(
1
), p.
16
.
2.
Hoseini
,
S. S.
,
Najafi
,
G.
,
Ghobadian
,
B.
,
Mamat
,
R.
,
Sidik
,
N. A. C.
, and
Azmi
,
W. H.
,
2017
, “
The Effect of Combustion Management on Diesel Engine Emissions Fueled With Biodiesel-Diesel Blends
,”
Renew. Sustain. Energy Rev.
,
73
, pp.
307
331
.
3.
Soudagar
,
M. E. M.
,
Nik-Ghazali
,
N. N.
,
Abul Kalam
,
M.
,
Badruddin
,
I. A.
,
Banapurmath
,
N. R.
, and
Akram
,
N.
,
2018
, “
The Effect of Nano-Additives in Diesel-Biodiesel Fuel Blends: A Comprehensive Review on Stability, Engine Performance and Emission Characteristics
,”
Energy Convers. Manage.
,
178
(
Oct.
), pp.
146
177
.
4.
Velmurugan
,
R.
,
Mayakrishnan
,
J.
,
Induja
,
S.
,
Raja
,
S.
,
Nandagopal
,
S.
, and
Sathyamurthy
,
R.
,
2019
, “
Comprehensive Study on the Effect of CuO Nano Fluids Prepared Using One-Step Chemical Synthesis Method on the Behavior of Waste Cooking Oil Biodiesel in Compression Ignition Engine
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041003
.
5.
Deepalika Kumar
,
V.
, and
Choudhary
,
A. K.
,
2023
, “
A Comparative Review on Evaluation of Performance, Combustion, and Emission Characteristics of Biodiesel Blends Enriched With Hydrogen, Additives and Their Combined Effect
,”
Therm. Sci. Eng. Prog.
,
46
(
Oct.
), p.
102185
.
6.
Azad
,
A. K.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
,
Sharma
,
S. C.
,
Mofijur
,
M.
, and
Bhuiya
,
M. M. K.
,
2016
, “
Prospects, Feedstocks and Challenges of Biodiesel Production From Beauty Leaf Oil and Castor Oil: A Nonedible Oil Sources in Australia
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
302
318
.
7.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
,
Panchal
,
H.
,
Elkelawy
,
M.
, and
Sadasivuni
,
K. K.
,
2020
, “
Optimization of Performance and Emission Characteristics of CI Engine Fueled With Jatropha Biodiesel Produced Using a Heterogeneous Catalyst (CaO)
,”
Fuel
,
280
(
June
), p.
118611
.
8.
Mehra
,
D.
,
Kumar
,
V.
,
Choudhary
,
A. K.
, and
Awasthi
,
M.
,
2023
, “
Performance and Emission Characteristics of CI Engine Using Hydrogen Enrichment in Biodiesel Blend With Additives—A Review
,”
J. Renewable Sustainable Energy
,
15
(
3
), pp.
1
17
.
9.
Said
,
N.
,
El-Shatoury
,
S. A.
,
Díaz
,
L. F.
, and
Zamorano
,
M.
,
2013
, “
Quantitative Appraisal of Biomass Resources and Their Energy Potential in Egypt
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
84
91
.
10.
Ashok
,
B.
,
Nanthagopal
,
K.
,
Saravanan
,
B.
,
Somasundaram
,
P.
,
Jegadheesan
,
C.
,
Chaturvedi
,
B.
,
Sharma
,
S.
, and
Patni
,
G.
,
2018
, “
A Novel Study on the Effect Lemon Peel Oil as a Fuel in CRDI Engine at Various Injection Strategies
,”
Energy Convers. Manage.
,
172
, pp.
517
528
.
11.
Sastry
,
G. R.
,
Gugulothu
,
S. K.
,
Bharath Raju
,
L. B.
,
Panda
,
J. K.
,
Bhurat
,
S. S.
, and
Burra
,
B.
,
2022
, “
Influence of Exhaust Gas Recirculation on Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/Higher Alcohol Blends
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101001
.
12.
Kumar
,
V.
, and
Choudhary
,
A. K.
,
2023
, “
A Sustainable Model Using RSM and MCDM Techniques to Evaluate Performance and Emission Characteristics of a Diesel Engine Fueled With Diphenylamine Antioxidant and CeO2 Nanoparticle Additive Biodiesel Blends
,”
J. Renewable Sustainable. Energy
,
15
(
6
), pp.
1
19
.
13.
Moncada
,
J.
,
Tamayo
,
J. A.
, and
Cardona
,
C. A.
,
2016
, “
Techno-Economic and Environmental Assessment of Essential Oil Extraction From Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia
,”
J. Cleaner Prod.
,
112
, pp.
172
181
.
14.
Singh
,
A.
,
Choudhary
,
A. K.
, and
Sinha
,
S.
,
2023
, “
An Investigation of Performance and Emissions of Diesel Engine Using Heterogeneous Catalyst Jatropha Biodiesel: A Sustainable Model Using Taguchi and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022301
.
15.
Singotia
,
P. K.
, and
Saraswati
,
S.
,
2023
, “
Cyclic Variability Analysis of an Engine Fueled With Gasoline/Natural Gas Using Return Maps and Symbol Sequences
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121703
.
16.
Kumar
,
V.
, and
Choudhary
,
A. K.
,
2024
, “
Influence of Phenolic Antioxidant Additives on Performance and Emission Characteristics of Diesel Engine Fuelled With Jatropha Biodiesel: A Sustainable Hybrid Model Using RSM and ANFIS
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
238
(
14
), pp.
7253
7274
.
17.
Anwar
,
M.
,
Rasul
,
M. G.
,
Ashwath
,
N.
, and
Nabi
,
M. D. N.
,
2019
, “
The Potential of Utilising Papaya Seed Oil and Stone Fruit Kernel Oil as Non-Edible Feedstock for Biodiesel Production in Australia—A Review
,”
Energy Rep.
,
5
, pp.
280
297
.
18.
El-Mougy
,
N. S.
,
2009
, “
Effect of Some Essential Oils for Limiting Early Blight (Alternaria solani) Development in Potato Field
,”
J. Plant Prot. Res.
,
49
(
1
), pp.
57
62
.
19.
Rahman
,
S. M. A.
,
Van
,
T. C.
,
Hossain
,
F. M.
,
Jafari
,
M.
,
Dowell
,
A.
,
Islam
,
M. A.
,
Nabi
,
M. N.
,
Marchese
A. J.
, et al
,
2019
, “
Fuel Properties and Emission Characteristics of Essential Oil Blends in a Compression Ignition Engine
,”
Fuel
,
238
, pp.
440
453
.
20.
Kumar
,
V.
, and
Choudhary
,
A. K.
,
2023
, “
Assessment and Usability of Jatropha Biodiesel Blend With Phenolic Antioxidant to Control NOx Emissions of an Unmodified Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
30
(
49
), pp.
108051
108066
.
21.
Silvestre
,
W. P.
,
Livinalli
,
N. F.
,
Baldasso
,
C.
, and
Tessaro
,
I. C.
,
2019
, “
Pervaporation in the Separation of Essential Oil Components: A Review
,”
Trends food Sci. Technol.
,
93
, pp.
42
52
.
22.
Debbarma
,
S.
, and
Misra
,
R. D.
,
2018
, “
Effects of Iron Nanoparticle Fuel Additive on the Performance and Exhaust Emissions of a Compression Ignition Engine Fueled With Diesel and Biodiesel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041002
23.
Vijay Kumar
,
M.
,
Veeresh Babu
,
A.
, and
Ravi Kumar
,
P.
,
2018
, “
The Impacts on Combustion, Performance and Emissions of Biodiesel by Using Additives in Direct Injection Diesel Engine
,”
Alexandria Eng. J.
,
57
(
1
), pp.
509
516
.
24.
Kumar
,
V.
, and
Choudhary
,
A. K.
,
2024
, “
Prediction of the Performance and Emission Characteristics of Diesel Engine Using Diphenylamine Antioxidant and Ceria Nanoparticle Additives With Biodiesel Based on Machine Learning
,”
Energy
,
301
, p.
131746
.
25.
Buosi
,
G. M.
,
da Silva
,
E. T.
,
Spacino
,
K.
,
Silva
,
L. R. C.
,
Ferreira
,
B. A. D.
, and
Borsato
,
D.
,
2016
, “
Oxidative Stability of Biodiesel From Soybean Oil: Comparison Between Synthetic and Natural Antioxidants
,”
Fuel
,
181
, pp.
759
764
.
26.
Borugadda
,
V. B.
,
Dalai
,
A. K.
, and
Ghosh
,
S.
,
2018
, “
Effects of Natural Additives on Performance of Canola Biodiesel and Its Structurally Modified Derivatives
,”
Ind. Crops Prod.
,
125
, pp.
303
313
.
27.
Tarabet
,
L.
,
Loubar
,
K.
,
Lounici
,
M. S.
,
Hanchi
,
S.
, and
Tazerout
,
M.
,
2012
, “
Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine
,”
Biomed Res. Int.
,
2012
(
1
), p.
235485
.
28.
Kapilan
,
N.
,
2021
, “
Comparative Study on CI Engine Performance and Emissions Using a Novel Antioxidant Additive
,”
J. Mech. Eng.
,
17
(
1
), pp.
63
76
.
29.
Kadarohman
,
A.
,
Khoerunnisa
,
F.
,
Sapee
,
S.
,
Eko Sardjono
,
R.
,
Izzudin
,
I.
,
Hendrawan Mamat
,
R.
,
Yusop
,
A. F.
,
Erdiwansyah Yusaf
,
T.
,
2021
, “
The Effect of Oxygenated Turpentine Oil Additive in Diesel Fuel on the Performance and Emission Characteristics in One-Cylinder DI Engines
,”
Designs
,
5
(
4
), p.
73
.
30.
Rahman
,
S. M. A.
,
Nabi
,
Md.
,
Van
,
T.
,
Suara
,
K.
,
Jafari
,
M.
,
Dowell
,
A.
,
Islam
,
Md.
,
Marchese
,
A.
, et al
,
2018
, “
Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends
,”
Energies
,
11
(
4
), p.
738
.
31.
Jeyakumar
,
N.
, and
Narayanasamy
,
B.
,
2019
, “
Clove as Antioxidant Additive in Diesel–Biodiesel Fuel Blends in Diesel Engines
,”
Int. J. Green Energy
,
16
(
4
), pp.
284
292
.
32.
Kadarohman
,
A.
,
Rohman
,
I.
,
Kusrini
,
R.
, and
Astuti
,
R. M.
,
2012
, “
Combustion Characteristics of Diesel Fuel on One Cylinder Diesel Engine Using Clove Oil, Eugenol, and Eugenyl Acetate as Fuel Bio-Additives
,”
Fuel
,
98
, pp.
73
79
.
33.
Nair
,
J. N.
,
Singh
,
T. S.
, and
Raju
,
V. D.
,
2021
, “
Effect of Addition of Bio-Additive Clove Oil to Ternary Fuel Blends (Diesel-Biodiesel-Ethanol) on Compression Ignition Engine
,”
J. Phys.: Conf. Series
,
2070
(
1
), p.
12212
.
34.
Dwivedi
,
G.
,
Jain
,
S.
, and
Sharma
,
M. P.
,
2011
, “
Pongamia as a Source of Biodiesel in India
,”
Smart Grid Renewable Energy
,
2
(
3
), pp.
184
189
.
35.
Dwivedi
,
G.
, and
Sharma
,
M. P.
,
2014
, “
Prospects of Biodiesel From Pongamia in India
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
114
122
.
36.
Kadarohman
,
A.
,
Hernani
,
H.
,
Khoerunisa
,
F.
, and
Astuti
,
R. M.
,
2010
, “
A Potential Study on Clove Oil, Eugenol and Eugenyl Acetate as Diesel Fuel Bio-Additives and Their Performance on One Cylinder Engine
,”
Transport
,
25
(
1
), pp.
66
76
.
37.
Purushothaman
,
K.
, and
Nagarajan
,
G.
,
2009
, “
Experimental Investigation on a CI Engine Using Orange Oil and Orange Oil With DEE
,”
Fuel
,
88
(
9
), pp.
1732
1740
.
38.
Sathiyamoorthi
,
R.
, and
Sankaranarayanan
,
G.
,
2014
, “
Experimental Investigation of Performance, Combustion and Emission Characteristics of Neat Lemongrass Oil in DI Diesel Engine
,”
Int. J. Curr. Eng. Technol.
,
3
, pp.
25
30
.
39.
Ellappan
,
S.
, and
Rajendran
,
S.
,
2021
, “
A Comparative Review of Performance and Emission Characteristics of Diesel Engine Using Eucalyptus-Biodiesel Blend
,”
Fuel
,
284
(
April 2020
), p.
118925
.
40.
Tamilvendhan
,
D.
, and
Ilangovan
,
V.
,
2011
, “
A Performance, Emission and Combustion Investigation on Hot Air Assisted Eucalyptus Oil Direct Injected Compression Ignition Engine
,”
Mod. Appl. Sci.
,
5
(
4
), p.
53
.
41.
Bridjesh
,
P.
,
Periyasamy
,
P.
, and
Mallikarjuna
,
M. V.
,
2017
, “
Selecting Optimal Combination of Operating Parameters of Diesel Engine Using Analytic Hierarchy Process
,”
Mater. Today Proc.
,
4
(
8
), pp.
7457
7466
.
42.
Goswami
,
S.
, and
Mitra
,
S.
,
2020
, “
Selecting the Best Mobile Model by Applying AHP-COPRAS and AHP-ARAS Decision Making Methodology
,”
Int. J. Data Networks Sci.
,
4
(
1
), pp.
27
42
.
43.
Kishore
,
K.
, and
Sinha
,
M. K.
,
2023
, “
Development of a Hierarchical Model for Significant Barriers in Grinding Technology Using an Integrated AHP-TISM Approach
,”
Int. J. Product. Qual. Manage.
,
40
(
2
), pp.
271
294
.
44.
Naeini
,
M. A.
,
Zandieh
,
M.
,
Najafi
,
S. E.
, and
Sajadi
,
S. M.
,
2020
, “
Analyzing the Development of the Third-Generation Biodiesel Production From Microalgae by a Novel Hybrid Decision-Making Method: The Case of Iran
,”
Energy
,
195
, p.
116895
.
45.
Pradhan
,
D. K.
,
Sahu
,
B.
,
Bagal
,
D. K.
,
Barua
,
A.
,
Jeet
,
S.
, and
Pradhan
,
S.
,
2022
, “
Application of Progressive Hybrid RSM-WASPAS-Grey Wolf Method for Parametric Optimization of Dissimilar Metal Welded Joints in FSSW Process
,”
Mater. Today Proc.
,
50
, pp.
766
772
.
46.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2015
, “
Optimization of Combustion Performance of Bioethanol (Water hyacinth) Diesel Blends on Diesel Engine Using Response Surface Methodology
,”
Arab. J. Sci. Eng.
,
40
(
12
), pp.
3675
3695
.
47.
Rashedul
,
H. K.
,
Kalam
,
Md A.
,
Masjuki
,
H. H.
,
Teoh
,
Y. H.
,
How
,
H. G.
,
Monirul
,
I. M.
, and
Imdadul
,
H. K.
,
2017
, “
Attempts to Minimize Nitrogen Oxide Emission From Diesel Engine by Using Antioxidant-Treated Diesel-Biodiesel Blend
,”
Environ. Sci. Pollut. Res.
,
24
(
10
), pp.
9305
9313
.
48.
Mohammed
,
A. S.
,
Atnaw
,
S. M.
,
Ramaya
,
A. V.
, and
Alemayehu
,
G.
,
2023
, “
A Comprehensive Review on the Effect of Ethers, Antioxidants, and Cetane Improver Additives on Biodiesel-Diesel Blend in CI Engine Performance and Emission Characteristics
,”
J. Energy Inst.
,
108
, p.
101227
.
49.
Kumar
,
V.
, and
Choudhary
,
A. K.
,
2023
, “
A Hybrid Response Surface Methodology and Multi-Criteria Decision Making Model to Investigate the Performance and Emission Characteristics of a Diesel Engine Fueled With Phenolic Antioxidant Additive and Biodiesel Blends
,”
ASME J. Energy Resour. Technol.
,
145
(
9
), p.
092302
.
You do not currently have access to this content.