Graphical Abstract Figure

Possible reaction pathway for the conversion of pinewood and PP to hydrocarbons in the presence of CaO and ZSM-5 as catalysts

Graphical Abstract Figure

Possible reaction pathway for the conversion of pinewood and PP to hydrocarbons in the presence of CaO and ZSM-5 as catalysts

Close modal

Abstract

Co-pyrolysis technology offers vital pathways for the efficient utilization of plastics and biomass resources to help reduce environmental problems and energy resource issues. The pyrolysis characteristics of pinewood and polypropylene (PP) mixtures were analyzed using thermogravimetric analysis. The results showed a decrease in the first peak of the mixture with an increase in PP in the mixture, while the second peak increased with an increase in PP in the mixture. The addition of a catalyst decreased the DTG peak heights. The reduction in the first peak with different catalysts was in the order: CaO/ZSM-5 > CaO > ZSM-5, while the second peak showed: CaO > CaO/ZSM-5 > ZSM-5. The activation energy, calculated by Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Friedman models, revealed that ZSM-5 reduced the activation energy, whereas CaO/ZSM-5 increased the activation energy, as compared to no catalyst case. Increase of co-pyrolysis temperature reduced the yield of aldehydes, ketones, acids, and esters, but increased the yield of hydrocarbons. The addition of CaO reduced the yield of ketones, phenols, esters, and acids, while it increased the yield of alcohols. The addition of ZSM-5 also decreased the yield of ketones, phenols, acids, and hydrocarbons, but increased the yield of furans and alcohols. The addition of CaO/ZSM-5 specifically reduced the yield of aldehydes and alcohols. The results show the important role of the specific catalysts examined on the resulting products distribution for the same reaction condition.

References

1.
Wu
,
M.
,
Wang
,
Z.
,
Chen
,
G.
,
Zhang
,
M.
,
Sun
,
T.
,
Wang
,
Q.
,
Zhu
,
H.
, et al
,
2023
, “
Synergistic Effects and Products Distribution During Co-Pyrolysis of Biomass and Plastics
,”
J. Energy Inst.
,
111
, p.
101392
.
2.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Prog. Energy Combust. Sci.
,
62
, pp.
33
86
.
3.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2022
, “
Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022306
.
4.
Wang
,
Z.
,
Li
,
Z.
,
Lei
,
T.
,
Yang
,
M.
,
Qi
,
T.
,
Lin
,
L.
,
Xin
,
X.
, et al
,
2016
, “
Life Cycle Assessment of Energy Consumption and Environmental Emissions for Cornstalk-Based Ethyl Levulinate
,”
Appl. Energy
,
183
, pp.
170
181
.
5.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Influence of Selected Gasification Parameters on Syngas Composition From Biomass Gasification
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041803
.
6.
Wang
,
Z.
,
Lei
,
T.
,
Yan
,
X.
,
Chen
,
G.
,
Xin
,
X.
,
Yang
,
M.
,
Guan
,
Q.
,
He
,
X.
, and
Gupta
,
A. K.
,
2019
, “
Common Characteristics of Feedstock Stage in Life Cycle Assessments of Agricultural Residue-Based Biofuels
,”
Fuel
,
253
, pp.
1256
1263
.
7.
Hassan
,
E. B.
,
Elsayed
,
I.
, and
Eseyin
,
A.
,
2016
, “
Production High Yields of Aromatic Hydrocarbons Through Catalytic Fast Pyrolysis of Torrefied Wood and Polystyrene
,”
Fuel
,
174
, pp.
317
324
.
8.
Wang
,
Z.
,
Lei
,
T.
,
Yang
,
M.
,
Li
,
Z.
,
Qi
,
T.
,
Xin
,
X.
,
He
,
X.
,
Ajayebi
,
A.
, and
Yan
,
X.
,
2017
, “
Life Cycle Environmental Impacts of Cornstalk Briquette Fuel in China
,”
Appl. Energy
,
192
, pp.
83
94
.
9.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals-A Review
,”
Prog. Energy Combust. Sci.
,
84
, p.
100899
.
10.
Lopez
,
G.
,
Artetxe
,
M.
,
Amutio
,
M.
,
Alvarez
,
J.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2018
, “
Recent Advances in the Gasification of Waste Plastics. A Critical Overview
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
576
596
.
11.
Qian
,
M.
,
Lei
,
H.
,
Zhao
,
Y.
,
Villota
,
E.
,
Huo
,
E.
,
Wang
,
C.
, and
Zhang
,
X.
,
2021
, “
Lignin-Mediated Preparation of Hierarchical ZSM-5 Catalysts and Their Effects in the Catalytic Co-Pyrolysis of Softwood Biomass and Low-Density Polyethylene Mixtures
,”
ACS Sustainable Chem. Eng.
,
9
(
37
), pp.
12602
12613
.
12.
Hassan
,
H.
,
Lim
,
J. K.
, and
Hameed
,
B. H.
,
2016
, “
Recent Progress on Biomass Co-Pyrolysis Conversion Into High-Quality Bio-Oil
,”
Bioresour. Technol.
,
221
, pp.
645
655
.
13.
Wang
,
Z.
,
Liu
,
X.
,
Burra
,
K. G.
,
Li
,
J.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Towards Enhanced Catalytic Reactivity in CO2-Assisted Gasification of Polypropylene
,”
Fuel
,
284
, p.
119076
.
14.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
15.
Sajdak
,
M.
, and
Muzyka
,
R.
,
2014
, “
Use of Plastic Waste as a Fuel in the Co-Pyrolysis of Biomass. Part I: The Effect of the Addition of Plastic Waste on the Process and Products
,”
J. Anal. Appl. Pyrolysis
,
107
, pp.
267
275
.
16.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2020
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
.
17.
Nardella
,
F.
,
Bellavia
,
S.
,
Mattonai
,
M.
, and
Ribechini
,
E.
,
2022
, “
Co-Pyrolysis of Biomass and Plastic: Synergistic Effects and Estimation of Elemental Composition of Pyrolysis Oil by Analytical Pyrolysis–Gas Chromatography/Mass Spectrometry
,”
Bioresour. Technol.
,
354
, p.
127170
.
18.
Liu
,
X.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2020
, “
On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene
,”
Appl. Energy
,
279
, p.
115811
.
19.
Wang
,
D.
,
Zhu
,
Y.
,
Chen
,
J.
,
Li
,
W.
,
Luo
,
F.
,
Li
,
S.
,
Xie
,
W.
,
Liu
,
J.
,
Lan
,
H.
, and
Zheng
,
Z.
,
2021
, “
Catalytic Upgrading of Lignocellulosic Biomass Pyrolysis Vapors: Insights Into Physicochemical Changes in ZSM-5
,”
J. Anal. Appl. Pyrolysis
,
156
, p.
105123
.
20.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2017
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032203
.
21.
Huang
,
M.
,
Xu
,
J.
,
Ma
,
Z.
,
Yang
,
Y.
,
Zhou
,
B.
,
Wu
,
C.
,
Ye
,
J.
, et al
,
2021
, “
Bio-BTX Production From the Shape Selective Catalytic Fast Pyrolysis of Lignin Using Different Zeolite Catalysts: Relevance Between the Chemical Structure and the Yield of Bio-BTX
,”
Fuel Process. Technol.
,
216
, p.
106792
.
22.
Shang
,
J.
,
Fu
,
G.
,
Cai
,
Z.
,
Feng
,
X.
,
Tuo
,
Y.
,
Zhou
,
X.
,
Yan
,
H.
, et al
,
2021
, “
Regulating Light Olefins or Aromatics Production in Ex-Situ Catalytic Pyrolysis of Biomass by Engineering the Structure of Tin Modified ZSM-5 Catalyst
,”
Bioresour. Technol.
,
330
, p.
124975
.
23.
Yang
,
Q.
,
Wu
,
Q.
,
Zhou
,
N.
,
Ke
,
L.
,
Fan
,
L.
,
Zeng
,
Y.
,
Xu
,
C.
,
Liu
,
Y.
,
Ruan
,
R.
, and
Wang
,
Y.
,
2023
, “
Continuous Catalytic Pyrolysis of Waste Oil to Aromatics: Exploring the Structure-Performance Relations of ZSM-5 Based on Different Scale-Up Forms
,”
Chem. Eng. J.
,
475
, p.
146259
.
24.
Li
,
Y.
,
Ahmad
,
M. S.
,
Tahir
,
M. H.
,
Bashir
,
M.
,
Khan
,
A. M.
,
Irfan
,
R. M.
,
Malik
,
I. R.
, and
Shen
,
B.
,
2024
, “
Catalytic Co-Pyrolysis of Cabbage Waste and Plastics With Ni/ZSM-5 Catalysis to Produce Aromatic-Rich Oil
,”
J. Anal. Appl. Pyrolysis
,
179
, p.
106518
.
25.
Lu
,
Q.
,
Zhang
,
Z.-F.
,
Dong
,
C.-Q.
, and
Zhu
,
X.-F.
,
2010
, “
Catalytic Upgrading of Biomass Fast Pyrolysis Vapors With Nano Metal Oxides: An Analytical Py-GC/MS Study
,”
Energies
,
3
(
11
), pp.
1805
1820
.
26.
Dai
,
M.
,
Yu
,
Z.
,
Fang
,
S.
, and
Ma
,
X.
,
2019
, “
Behaviors, Product Characteristics and Kinetics of Catalytic Co-Pyrolysis Spirulina and Oil Shale
,”
Energy Convers. Manage.
,
192
, pp.
1
10
.
27.
Idris
,
S. S.
,
Rahman
,
N. A.
,
Ismail
,
K.
,
Alias
,
A. B.
,
Rashid
,
Z. A.
, and
Aris
,
M. J.
,
2010
, “
Investigation on Thermochemical Behaviour of Low Rank Malaysian Coal, Oil Palm Biomass and Their Blends During Pyrolysis Via Thermogravimetric Analysis (TGA)
,”
Bioresour. Technol.
,
101
(
12
), pp.
4584
4592
.
28.
Anandaram
,
H.
,
Srivastava
,
B. K.
,
Vijayakumar
,
B.
,
Madhu
,
P.
,
Depoures
,
M. V.
,
Patil
,
P. P.
,
Chhabria
,
S.
,
Patel
,
P. B.
, and
Prabhakar
,
S.
,
2022
, “
Co-Pyrolysis Characteristics and Synergistic Interaction of Waste Polyethylene Terephthalate and Woody Biomass Towards Bio-Oil Production
,”
J. Chem.
,
2022
, pp.
1
9
.
29.
Zhang
,
L.
,
Li
,
S.
,
Li
,
K.
, and
Zhu
,
X.
,
2018
, “
Two-Step Pyrolysis of Corncob for Value-Added Chemicals and High Quality Bio-Oil: Effects of Pyrolysis Temperature and Residence Time
,”
Energy Convers. Manage.
,
166
, pp.
260
267
.
30.
Toro-Trochez
,
J. L.
,
Haro Del Río
,
D. A. D.
,
Sandoval-Rangel
,
L.
,
Bustos-Martínez
,
D.
,
García-Mateos
,
F. J.
,
Ruiz-Rosas
,
R.
,
Rodríguez-Mirasol
,
J.
,
Cordero
,
T.
, and
Carrillo-Pedraza
,
E. S.
,
2022
, “
Catalytic Fast Pyrolysis of Soybean Hulls: Focus on the Products
,”
J. Anal. Appl. Pyrolysis
,
163
, p.
105492
.
31.
Ahmed
,
I. I.
,
Nipattummakul
,
N.
, and
Gupta
,
A. K.
,
2011
, “
Characteristics of Syngas From Co-Gasification of Polyethylene and Woodchips
,”
Appl. Energy
,
88
(
1
), pp.
165
174
.
32.
Sekyere
,
D. T.
,
Zhang
,
J.
,
Chen
,
Y.
,
Huang
,
Y.
,
Wang
,
M.
,
Wang
,
J.
,
Niwamanya
,
N.
,
Barigye
,
A.
, and
Tian
,
Y.
,
2023
, “
Production of Light Olefins and Aromatics Via Catalytic Co-Pyrolysis of Biomass and Plastic
,”
Fuel
,
333
, p.
126339
.
33.
Zheng
,
Y.
,
Tao
,
L.
,
Yang
,
X.
,
Huang
,
Y.
,
Liu
,
C.
, and
Zheng
,
Z.
,
2018
, “
Study of the Thermal Behavior, Kinetics, and Product Characterization of Biomass and Low-Density Polyethylene Co-Pyrolysis by Thermogravimetric Analysis and Pyrolysis-GC/MS
,”
J. Anal. Appl. Pyrolysis
,
133
, pp.
185
197
.
34.
Hussain Tahir
,
M.
, and
Shimizu
,
N.
,
2024
, “
Enhancing Bio-Based Chemical Production and Reducing Pollutants Emission Through the Synergistic Effect of ZSM-5/CaO During Hydrogen-Deficient Biomass Pyrolysis
,”
Ther. Sci. Eng. Prog.
,
49
, p.
102494
.
35.
Li
,
X.
,
Li
,
J.
,
Zhou
,
G.
,
Feng
,
Y.
,
Wang
,
Y.
,
Yu
,
G.
,
Deng
,
S.
,
Huang
,
J.
, and
Wang
,
B.
,
2014
, “
Enhancing the Production of Renewable Petrochemicals by Co-Feeding of Biomass With Plastics in Catalytic Fast Pyrolysis With ZSM-5 Zeolites
,”
Appl. Catal., A
,
481
, pp.
173
182
.
36.
Chen
,
J.
,
Ma
,
X.
,
Yu
,
Z.
,
Deng
,
T.
,
Chen
,
X.
,
Chen
,
L.
, and
Dai
,
M.
,
2019
, “
A Study on Catalytic Co-Pyrolysis of Kitchen Waste With Tire Waste Over ZSM-5 Using TG-FTIR and Py-GC/MS
,”
Bioresour. Technol.
,
289
, p.
121585
.
37.
Park
,
Y.-K.
,
Jung
,
J.
,
Ryu
,
S.
,
Lee
,
H. W.
,
Siddiqui
,
M. Z.
,
Jae
,
J.
,
Watanabe
,
A.
, and
Kim
,
Y.-M.
,
2019
, “
Catalytic Co-Pyrolysis of Yellow Poplar Wood and Polyethylene Terephthalate Over Two Stage Calcium Oxide-ZSM-5
,”
Appl. Energy
,
250
, pp.
1706
1718
.
38.
Xiang
,
Z.
,
Liang
,
J.
,
Morgan
,
H. M.
,
Liu
,
Y.
,
Mao
,
H.
, and
Bu
,
Q.
,
2018
, “
Thermal Behavior and Kinetic Study for Co-Pyrolysis of Lignocellulosic Biomass With Polyethylene Over Cobalt Modified ZSM-5 Catalyst by Thermogravimetric Analysis
,”
Bioresour. Technol.
,
247
, pp.
804
811
.
39.
Tang
,
F.
,
Yu
,
Z.
,
Li
,
Y.
,
Chen
,
L.
, and
Ma
,
X.
,
2020
, “
Catalytic Co-Pyrolysis Behaviors, Product Characteristics and Kinetics of Rural Solid Waste and Chlorella Vulgaris
,”
Bioresour. Technol.
,
299
, p.
122636
.
40.
Heydari
,
M.
,
Rahman
,
M.
, and
Gupta
,
R.
,
2015
, “
Kinetic Study and Thermal Decomposition Behavior of Lignite Coal
,”
Int. J. Chem. Eng.
,
2015
, pp.
1
9
.
41.
Lu
,
Q.
,
Yang
,
X.
,
Dong
,
C.
,
Zhang
,
Z.
,
Zhang
,
X.
, and
Zhu
,
X.
,
2011
, “
Influence of Pyrolysis Temperature and Time on the Cellulose Fast Pyrolysis Products: Analytical Py-GC/MS Study
,”
J. Anal. Appl. Pyrolysis
,
92
(
2
), pp.
430
438
.
42.
Cheng
,
Y.-T.
, and
Huber
,
G. W.
,
2012
, “
Production of Targeted Aromatics by Using Diels–Alder Classes of Reactions With Furans and Olefins Over ZSM-5
,”
Green Chem.
,
14
(
11
), p.
3114
.
43.
Fu
,
H.
,
Li
,
X.
,
Shao
,
S.
, and
Cai
,
Y.
,
2024
, “
Jet Fuel Range Hydrocarbon Generation From Catalytic Pyrolysis of Lignin and Polypropylene With Iron-Modified Activated Carbon
,”
J. Anal. Appl. Pyrolysis
,
177
, p.
106360
.
44.
Shao
,
S.
,
Liu
,
C.
,
Xiang
,
X.
,
Li
,
X.
,
Zhang
,
H.
, and
Xiao
,
R.
,
2022
, “
Insight Into the Selective Production of Aldehydes and Ketones by Catalytic Upgrading of Biomass Pyrolysis Vapor Over ZrO2: Cellulose and Xylan
,”
Biomass Bioenergy
,
162
, p.
106473
.
45.
Ren
,
X.-Y.
,
Zhang
,
Z.-T.
,
Wang
,
W.-L.
,
Si
,
H.
,
Wang
,
X.
, and
Chang
,
J.-M.
,
2013
, “
Transformation and Products Distribution of Moso Bamboo and Derived Components During Pyrolysis
,”
BioResources
,
8
(
3
), pp.
3685
3698
.
46.
Gao
,
N.
,
Li
,
A.
,
Quan
,
C.
,
Du
,
L.
, and
Duan
,
Y.
,
2013
, “
TG–FTIR and Py–GC/MS Analysis on Pyrolysis and Combustion of Pine Sawdust
,”
J. Anal. Appl. Pyrolysis
,
100
, pp.
26
32
.
47.
Li
,
J.
,
Shang
,
Y.
,
Wei
,
W.
,
Liu
,
Z.
,
Qiao
,
Y.
,
Qin
,
S.
, and
Tian
,
Y.
,
2022
, “
Comparative Study on Pyrolysis Kinetics Behavior and High-Temperature Fast Pyrolysis Product Analysis of Coastal Zone and Land Biomasses
,”
ACS Omega
,
7
(
12
), pp.
10144
10155
.
48.
Martínez
,
J. D.
,
Veses
,
A.
,
Mastral
,
A. M.
,
Murillo
,
R.
,
Navarro
,
M. V.
,
Puy
,
N.
,
Artigues
,
A.
,
Bartrolí
,
J.
, and
García
,
T.
,
2014
, “
Co-Pyrolysis of Biomass With Waste Tyres: Upgrading of Liquid Bio-Fuel
,”
Fuel Process. Technol.
,
119
, pp.
263
271
.
49.
Sun
,
T.
,
Lei
,
T.
,
Li
,
Z.
,
Yang
,
Y.
,
Yang
,
S.
,
Liu
,
P.
,
Li
,
Y.
,
Wang
,
X.
, and
Zhang
,
M.
,
2023
, “
Effects of Reaction Temperature and Molecular Sieve Catalyst on the Distribution of Pyrolysis Products of Biomass Components
,”
Ind. Crops Prod.
,
191
, p.
116012
.
50.
Gao
,
X.
,
Zhou
,
Z.
,
Wang
,
J.
,
Tian
,
H.
,
Qing
,
M.
,
Jiang
,
L.
, and
Cheng
,
Y.
,
2023
, “
Comparative Study of the Catalytic Co-Pyrolysis of Microalgae (Chlorella Vulgaris) and Polypropylene With Acid and Base Catalysts Toward Valuable Chemicals Production
,”
Fuel Process. Technol.
,
241
, p.
107520
.
51.
Che
,
Q.
,
Yang
,
M.
,
Wang
,
X.
,
Chen
,
X.
,
Chen
,
W.
,
Yang
,
Q.
,
Yang
,
H.
, and
Chen
,
H.
,
2019
, “
Aromatics Production With Metal Oxides and ZSM-5 as Catalysts in Catalytic Pyrolysis of Wood Sawdust
,”
Fuel Process. Technol.
,
188
, pp.
146
152
.
52.
Lazaridis
,
P. A.
,
Fotopoulos
,
A. P.
,
Karakoulia
,
S. A.
, and
Triantafyllidis
,
K. S.
,
2018
, “
Catalytic Fast Pyrolysis of Kraft Lignin With Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics
,”
Front. Chem.
,
6
, p.
295
.
53.
Zhang
,
H.
,
Cheng
,
Y.-T.
,
Vispute
,
T. P.
,
Xiao
,
R.
, and
Huber
,
G. W.
,
2011
, “
Catalytic Conversion of Biomass-Derived Feedstocks Into Olefins and Aromatics With ZSM-5: The Hydrogen to Carbon Effective Ratio
,”
Energy Environ. Sci.
,
4
(
6
), p.
2297
.
You do not currently have access to this content.