Graphical Abstract Figure

Pyrolysis Treatment for Sludge and Animal Manures: Enthalpy Analysis and the Effect of Heating Rate on Reaction Outcomes

Graphical Abstract Figure

Pyrolysis Treatment for Sludge and Animal Manures: Enthalpy Analysis and the Effect of Heating Rate on Reaction Outcomes

Close modal

Abstract

This study investigates the thermal degradation behavior of sludge and four types of animal manures (cow, chicken, horse, and sheep) under pyrolysis treatment at different heating rates. The sludge samples were subjected to varying heating rates to observe their impact on weight loss profiles, peaks, and enthalpy released. The results demonstrated distinct thermal events corresponding to the pyrolysis process, highlighting significant weight loss around specific temperature ranges. The findings indicate that the heating rate profoundly influences pyrolysis behavior, with higher heating rates resulting in decreased enthalpy release. This information is crucial for optimizing waste management processes. Cow manure released the most enthalpy among the samples, indicating a higher energy release during degradation. In contrast, sludge exhibited the highest thermal stability, requiring higher temperatures for its molecular degradation to commence and releasing the least enthalpy compared to the rest of the samples. These observations suggest that optimizing heating rates can enhance the efficiency of thermal waste management practices. The study provides valuable insights into the distinct thermal behaviors of different types of waste, emphasizing the importance of tailored pyrolysis treatments. By understanding each material's specific thermal degradation characteristics, more efficient and effective waste management strategies can be developed. This research underscores the potential for improving thermal treatment processes through careful control of heating rates, ultimately contributing to better resource utilization and environmental sustainability. The higher enthalpy release from cow manure and the thermal stability of sludge offer critical information for designing optimized pyrolysis protocols for various waste types, enhancing overall treatment efficiency.

References

1.
Selim
,
O. M.
,
Maache
,
M.
,
Kada
,
C.
,
Kumano
,
H.
, and
Amano
,
R.
,
2023
, “
Thermochemical Conversion of Cow Manure With Different Heating Rates
,”
ASME Power Applied R&D 2023
,
Long Beach, CA
,
Aug. 6–8
, pp.
1
3
.
2.
Seiple
,
T. E.
,
Coleman
,
A. M.
, and
Skaggs
,
R. L.
,
2017
, “
Municipal Wastewater Sludge as a Sustainable Bioresource in the United States
,”
J. Environ. Manage.
,
197
, pp.
673
680
.
3.
Hatinoğlu
,
M. D.
, and
Sanin
,
F. D.
,
2021
, “
Sewage Sludge as a Source of Microplastics in the Environment: A Review of Occurrence and Fate During Sludge Treatment
,”
J. Environ. Manage.
,
295
, p.
113028
.
4.
Achkir
,
A.
,
Aouragh
,
A.
,
El Mahi
,
M.
,
Lotfi
,
E. M.
,
Labjar
,
N.
,
EL Bouch
,
M.
,
Ouahidi
,
M. L.
,
Badza
,
T.
,
Farhane
,
H.
, and
EL Moussaoui
,
T.
,
2023
, “
Implication of Sewage Sludge Increased Application Rates on Soil Fertility and Heavy Metals Contamination Risk
,”
Emerg. Contam.
,
9
, p.
100200
.
5.
Hassan
,
F.
,
Prasetya
,
K. D.
,
Hanun
,
J. N.
,
Bui
,
H. M.
,
Rajendran
,
S.
,
Kataria
,
N.
,
Khoo
,
K. S.
,
Wang
,
Y.-F.
,
You
,
S.-J.
, and
Jiang
,
J.-J.
,
2023
, “
Microplastic Contamination in Sewage Sludge: Abundance, Characteristics, and Impacts on the Environment and Human Health
,”
Environ. Technol. Innov.
,
31
.
6.
Okopil
,
S.
,
Li
,
Y.
, and
Xu
,
F.
,
2024
, “Biomass Digestion,”
Encyclopedia of Sustainable Technologies (Second Edition)
,
M.
Abraham
, ed.,
Elsevier
,
Oxford
, pp.
236
251
.
7.
Prado
,
J.
,
Ribeiro
,
H.
,
Alvarenga
,
P.
, and
Fangueiro
,
D.
,
2022
, “
A Step Towards the Production of Manure-Based Fertilizers: Disclosing the Effects of Animal Species and Slurry Treatment on Their Nutrients Content and Availability
,”
J. Clean. Prod.
,
337
, p.
130369
.
8.
Qi
,
J.
,
Yang
,
H.
,
Wang
,
X.
,
Zhu
,
H.
,
Wang
,
Z.
,
Zhao
,
C.
,
Li
,
B.
, and
Liu
,
Z.
,
2023
, “
State-of-the-Art on Animal Manure Pollution Control and Resource Utilization
,”
J. Environ. Chem. Eng.
,
11
, p.
110462
.
9.
Pajura
,
R.
,
2024
, “
Composting Municipal Solid Waste and Animal Manure in Response to the Current Fertilizer Crisis—A Recent Review
,”
Sci. Total Environ.
,
912
, p.
169221
.
10.
Dadrasnia
,
A.
,
de Bona Muñoz
,
I.
,
Yáñez
,
E. H.
,
Lamkaddam
,
I. U.
,
Mora
,
M.
,
Ponsá
,
S.
,
Ahmed
,
M.
,
Argelaguet
,
L. L.
,
Williams
,
P. M.
, and
Oatley-Radcliffe
,
D. L.
,
2021
, “
Sustainable Nutrient Recovery From Animal Manure: A Review of Current Best Practice Technology and the Potential for Freeze Concentration
,”
J. Clean. Prod.
,
315
, p.
128106
.
11.
Andrade
,
E. P.
,
Bonmati
,
A.
,
Esteller
,
L. J.
, and
Vallejo
,
A. A.
,
2022
, “
Assessment of Social Aspects Across Europe Resulting From the Insertion of Technologies for Nutrient Recovery and Recycling in Agriculture
,”
Sustain. Prod. Consum.
,
31
, pp.
52
66
.
12.
Balcioglu
,
G.
,
Jeswani
,
H. K.
, and
Azapagic
,
A.
,
2022
, “
Evaluating the Environmental and Economic Sustainability of Energy From Anaerobic Digestion of Different Feedstocks in Turkey
,”
Sustain. Prod. Consum.
,
32
, pp.
924
941
.
13.
Bolan
,
S.
,
Padhye
,
L. P.
,
Jasemizad
,
T.
,
Govarthanan
,
M.
,
Karmegan
,
N.
,
Wijesekara
,
H.
,
Amarasiri
,
D.
, et al
,
2024
, “
Impacts of Climate Change on the Fate of Contaminants Through Extreme Weather Events
,”
Sci. Total Environ.
,
909
, p.
168388
.
14.
Edwards
,
T. M.
,
Puglis
,
H. J.
,
Kent
,
D. B.
,
Durán
,
J. L.
,
Bradshaw
,
L. M.
, and
Farag
,
A. M.
,
2024
, “
Ammonia and Aquatic Ecosystems—A Review of Global Sources, Biogeochemical Cycling, and Effects on Fish
,”
Sci. Total Environ.
,
907
, p.
167911
.
15.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and Air Gasification
,”
Appl. Energy
,
181
, pp.
408
415
.
16.
Sadeghpour
,
A.
, and
Afshar
,
R. K.
,
2024
, “
Livestock Manure: From Waste to Resource in a Circular Economy
,”
J. Agric. Food Res.
,
17
, p.
101255
.
17.
Hoyos-Sebá
,
J. J.
,
Arias
,
N. P.
,
Salcedo-Mendoza
,
J.
, and
Aristizábal-Marulanda
,
V.
,
2024
, “
Animal Manure in the Context of Renewable Energy and Value-Added Products: A Review
,”
Chem. Eng. Process. Process Intensif.
,
196
, p.
109660
.
18.
Zhang
,
B.
,
Zhang
,
S.-X.
,
Yao
,
R.
,
Wu
,
Y.-H.
, and
Qiu
,
J.-S.
,
2021
, “
Progress and Prospects of Hydrogen Production: Opportunities and Challenges
,”
J. Electron. Sci. Technol.
,
19
, p.
100080
.
19.
Arpia
,
A. A.
,
Chen
,
W.-H.
,
Lam
,
S. S.
,
Rousset
,
P.
, and
de Luna
,
M. D. G.
,
2021
, “
Sustainable Biofuel and Bioenergy Production From Biomass Waste Residues Using Microwave-Assisted Heating: A Comprehensive Review
,”
Chem. Eng. J.
,
403
, p.
126233
.
20.
Anae
,
J.
,
Ahmad
,
N.
,
Kumar
,
V.
,
Thakur
,
V. K.
,
Gutierrez
,
T.
,
Yang
,
X. J.
,
Cai
,
C.
,
Yang
,
Z.
, and
Coulon
,
F.
,
2021
, “
Recent Advances in Biochar Engineering for Soil Contaminated With Complex Chemical Mixtures: Remediation Strategies and Future Perspectives
,”
Sci. Total Environ.
,
767
, p.
144351
.
21.
Al-Rumaihi
,
A.
,
Shahbaz
,
M.
,
Mckay
,
G.
,
Mackey
,
H.
, and
Al-Ansari
,
T.
,
2022
, “
A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass Towards Optimum Biochar Yield
,”
Renew. Sustain. Energy Rev.
,
167
, p.
112715
.
22.
Zhao
,
Q.
,
Mäkinen
,
M.
,
Haapala
,
A.
, and
Jänis
,
J.
,
2020
, “
Thermochemical Conversion of Birch Bark by Temperature-Programmed Slow Pyrolysis With Fractional Condensation
,”
J. Anal. Appl. Pyrol.
,
150
, p.
104843
.
23.
Joshi
,
N. C.
,
Sinha
,
S.
,
Bhatnagar
,
P.
,
Nath
,
Y.
,
Negi
,
B.
,
Kumar
,
V.
, and
Gururani
,
P.
,
2024
, “
A Concise Review on Waste Biomass Valorization Through Thermochemical Conversion
,”
Curr. Res. Microb. Sci.
,
6
, p.
100237
.
24.
Lui
,
J.
,
Chen
,
W.-H.
,
Tsang
,
D. C. W.
, and
You
,
S.
,
2020
, “
A Critical Review on the Principles, Applications, and Challenges of Waste-to-Hydrogen Technologies
,”
Renew. Sustain. Energy Rev.
,
134
, p.
110365
.
25.
Moško
,
J.
,
Jeremiáš
,
M.
,
Skoblia
,
S.
,
Beňo
,
Z.
,
Sikarwar
,
V. S.
,
Hušek
,
M.
,
Wang
,
H.
, and
Pohořelý
,
M.
,
2022
, “
Residual Moisture in the Sewage Sludge Feed Significantly Affects the Pyrolysis Process: Simulation of Continuous Process in a Batch Reactor
,”
J. Anal. Appl. Pyrol.
,
161
, p.
105387
.
26.
Lv
,
P.
,
Wu
,
R.
,
Wang
,
J.
,
Bai
,
Y.
,
Ding
,
L.
,
Wei
,
J.
,
Song
,
X.
, and
Yu
,
G.
,
2022
, “
Energy Recovery of Livestock Manure and Industrial Sludge by Co-hydrocarbonisation Coupled to Pyrolysis and Gasification
,”
J. Clean. Prod.
,
374
, p.
133996
.
27.
Czajczyńska
,
D.
,
Anguilano
,
L.
,
Ghazal
,
H.
,
Krzyżyńska
,
R.
,
Reynolds
,
A.
,
Spencer
,
N.
, and
Jouhara
,
H.
,
2017
, “
Potential of Pyrolysis Processes in the Waste Management Sector
,”
Therm. Sci. Eng. Prog.
,
3
, pp.
171
197
.
28.
Nogués
,
I.
,
Miritana
,
V.
,
Passatore
,
L.
,
Zacchini
,
M.
,
Peruzzi
,
E.
,
Carloni
,
S.
,
Pietrini
,
F.
, et al
,
2023
, “
Biochar Soil Amendment as Carbon Farming Practice in a Mediterranean Environment
,”
Geoderma Regional
,
33
, p.
e00634
.
29.
Shoudho
,
K. N.
,
Khan
,
T. H.
,
Ara
,
U. R.
,
Khan
,
M. R.
,
Shawon
,
Z. B. Z.
, and
Hoque
,
M. E.
,
2024
, “
Biochar in Global Carbon Cycle: Towards Sustainable Development Goals
,”
Curr. Res. Green Sustain. Chem.
,
8
, p.
100409
.
30.
Ahmed
,
S. F.
,
Rafa
,
S. J.
,
Mehjabin
,
A.
,
Tasannum
,
N.
,
Ahmed
,
S.
,
Mofijur
,
M.
,
Lichtfouse
,
E.
,
Almomani
,
F.
,
Badruddin
,
I. A.
, and
Kamangar
,
S.
,
2023
, “
Bio-oil From Microalgae: Materials, Production, Technique, and Future
,”
Energy Rep.
,
10
, pp.
3297
3314
.
31.
Dinc
,
G.
,
Isik
,
F.
, and
Yel
,
E.
,
2020
, “
Effects of Pyrolysis Conditions on Organic Fractions and Heat Values of Olive Mill Wastes Pyrolysis Liquid
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102107
.
32.
Selim
,
O. M.
, and
Amano
,
R. S.
,
2021
, “
Co-Pyrolysis of Chicken and Cow Manure
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011301
.
33.
Gu
,
W.
,
Guo
,
J.
,
Bai
,
J.
,
Dong
,
B.
,
Hu
,
J.
,
Zhuang
,
X.
,
Zhang
,
C.
, and
Shih
,
K.
,
2022
, “
Co-pyrolysis of Sewage Sludge and Ca(H2PO4)2: Heavy Metal Stabilization, Mechanism, and Toxic Leaching
,”
J. Environ. Manage.
,
305
, p.
114292
.
34.
Mishra
,
K.
,
Siwal
,
S. S.
,
Nayaka
,
S. C.
,
Guan
,
Z.
, and
Thakur
,
V. K.
,
2023
, “
Waste-to-Chemicals: Green Solutions for Bioeconomy Markets
,”
Sci. Total Environ.
,
887
, p.
164006
.
35.
Ren
,
H.
,
Jiang
,
N.
,
Wang
,
T.
,
Mubashar Omar
,
M.
,
Ruan
,
W.
, and
Ghafoor
,
A.
,
2018
, “
Enhanced Biogas Production in the Duckweed Anaerobic Digestion Process
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041805
.
36.
Huang
,
Y.
,
Tao
,
B.
,
Lal
,
R.
,
Lorenz
,
K.
,
Jacinthe
,
P.-A.
,
Shrestha
,
R. K.
,
Bai
,
X.
,
Singh
,
M. P.
,
Lindsey
,
L. E.
, and
Ren
,
W.
,
2023
, “
A Global Synthesis of Biochar’s Sustainability in Climate-Smart Agriculture—Evidence From Field and Laboratory Experiments
,”
Renew. Sustain. Energy Rev.
,
172
, p.
113042
.
37.
Afshar
,
M.
, and
Mofatteh
,
S.
,
2024
, “
Biochar for a Sustainable Future: Environmentally Friendly Production and Diverse Applications
,”
Res. Eng.
,
23
(
2590-1230
), p.
102433
.
38.
Rey
,
J. R. C.
,
Longo
,
A.
,
Rijo
,
B.
,
Pedrero
,
C. M.
,
Tarelho
,
L. A. C.
,
Brito
,
P. S. D.
, and
Nobre
,
C.
,
2024
, “
A Review of Cleaning Technologies for Biomass-Derived Syngas
,”
Fuel
,
377
, p.
132776
.
39.
Yan
,
Y.
,
Feng
,
S.
,
Zhang
,
L.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
Z.
,
2018
, “
Experimental Research on Catalytic Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032201
.
40.
Cheung
,
K.-Y.
,
Lee
,
K.-L.
,
Lam
,
K. L.
,
Chan
,
T.-Y.
,
Lee
,
C.-W.
, and
Hui
,
D.
,
2011
, “
Operation Strategy for Multi-stage Pyrolysis
,”
J. Anal. Appl. Pyrol.
,
91
(
5
), pp.
165
182
.
41.
Wang
,
T.
,
Huang
,
Z.
,
Ren
,
H.
,
Miao
,
H.
,
Zhao
,
M.
, and
Ruan
,
W.
,
2019
, “
Effective Anaerobic Bio-treatment of Fresh Leachate From Municipal Solid Waste Incineration Plant by Full-Scale Internal Circulation Reactor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042005
.
42.
Jouhara
,
H.
,
Ahmad
,
D.
,
van den Boogaert
,
I.
,
Katsou
,
E.
,
Simons
,
S.
, and
Spencer
,
N.
,
2018
, “
Pyrolysis of Domestic Based Feedstock at Temperatures Up To 300 °C
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
117
143
.
43.
da Silva Filho
,
V. F.
,
Batistella
,
L.
,
Alves
,
J. L. F.
,
Da Silva
,
J. C. G.
,
Althoff
,
C. A.
,
Moreira
,
R. F. P. M.
, and
José
,
H. J.
,
2019
, “
Evaluation of Gaseous Emissions From Thermal Conversion of a Mixture of Solid Municipal Waste and Wood Chips in a Pilot-Scale Heat Generator
,”
Renew. Energy
,
141
, pp.
402
410
.
44.
Qureshi
,
K. M.
,
Kay Lup
,
A. N.
,
Khan
,
S.
,
Abnisa
,
F.
, and
Wan Daud
,
W. M. A.
,
2018
, “
A Technical Review on Semi-continuous and Continuous Pyrolysis Process of Biomass to Bio-oil
,”
J. Anal. Appl. Pyrol.
,
131
, pp.
52
75
.
45.
Li
,
J.
,
Qiao
,
Y.
,
Zong
,
P.
,
Qin
,
S.
,
Wang
,
C.
, and
Tian
,
Y.
,
2019
, “
Fast Pyrolysis Characteristics of Two Typical Coastal Zone Biomass Fuels by Thermal Gravimetric Analyzer and Down Tube Reactor
,”
Bioresour. Technol.
,
283
, pp.
96
105
.
46.
Das
,
B.
, and
Mohanty
,
K.
,
2019
, “
A Review on Advances in Sustainable Energy Production Through Various Catalytic Processes by Using Catalysts Derived From Waste Red Mud
,”
Renew. Energy
,
143
, pp.
1791
1811
.
47.
Hussein
,
M.
,
Burra
,
K.
,
Amano
,
R.
, and
Gupta
,
A.
,
2017
, “
Effect of Oxygen Addition in Steam Gasification of Chicken Manure
,”
Fuel
,
189
, pp.
428
435
.
48.
Hussein
,
M.
,
Burra
,
K.
,
Amano
,
R.
, and
Gupta
,
A.
,
2017
, “
Temperature and Gasifying Media Effects on Chicken Manure Pyrolysis and Gasification
,”
Fuel
,
202
, pp.
36
45
.
You do not currently have access to this content.