Abstract

A series of renewable and clean oxygenated compounds possessing high octane numbers, including alcohols, ethers, esters, and furans, were used as octane boosters for gasoline fuels, and the octane responses of the gasoline fuels to these oxygenates addition were evaluated. Gasoline model fuels of different typical hydrocarbon compounds, including iso-octane, n-heptane, toluene, diisobutylene, and cyclohexane, were designed to have the identical octane rating. The research octane number (RON) and motor octane number (MON) of the gasoline model fuels with antiknock oxygenates addition were experimentally measured on a standard cooperative fuel research (CFR) engine. The results highlight the varied impact of antiknock oxygenates on the octane enhancement of gasoline fuels, with 2-methylfuran exhibiting the most pronounced RON boost effect and ethanol demonstrating the strongest MON enhancement effects, and isopropyl ether and dimethyl carbonate show the weakest RON and MON boost effects, respectively. The antiknock enhancement effects of the oxygenated additives are dependent on gasoline fuel compositions. With the antiknock oxygenates addition, primary reference fuel (PRF) model fuel shows more significant octane enhancements, and the octane boosting effects are reduced for the gasoline model fuels containing toluene or diisobutylene, indicating an antagonistic interaction between the oxygenates and toluene/diisobutylene. By comparing the octane enhancement effects of the tested antiknock additives, it is evident that 2-methylfuran and ethanol are the more superior antiknock candidates for gasoline fuels.

References

1.
Leone
,
T. G.
,
Anderson
,
J. E.
,
Davis
,
R. S.
,
Iqbal
,
A.
,
Reese
,
R. A.
,
Shelby
,
M. H.
, and
Studzinski
,
W. M.
,
2015
, “
The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency
,”
Environ. Sci. Technol.
,
49
(
18
), pp.
10778
10789
.
2.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
.
3.
Singotia
,
P. K.
, and
Saraswati
,
S.
,
2023
, “
Cyclic Variability Analysis of an Engine Fueled With Gasoline/Natural Gas Using Return Maps and Symbol Sequences
,”
ASME J. Energy Resour. Technol.
,
145
(
12
), p.
121703
.
4.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032305
.
5.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
6.
Wu
,
H.
,
Zhang
,
Y.
,
Mi
,
S.
,
Zhao
,
W.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2023
, “
A Methodology for Regulating Fuel Stratification and Improving Fuel Economy of GCI Mode Via Double Main-Injection Strategy
,”
Front. Energy
,
17
(
5
), pp.
678
691
.
7.
Zhou
,
L.
,
Shao
,
A.
,
Hua
,
J.
,
Wei
,
H.
, and
Feng
,
D.
,
2018
, “
Effect of Retarded Injection Timing on Knock Resistance and Cycle to Cycle Variation in Gasoline Direct Injection Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072202
.
8.
ASTM International
,
2012
,
Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM D2699-12.
9.
ASTM International
,
2016
,
Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM D2700-16.
10.
Abdellatief
,
T. M. M.
,
Ershov
,
M. A.
,
Savelenko
,
V. D.
,
Kapustin
,
V. M.
,
Makhova
,
U. A.
,
Klimov
,
N. A.
,
Chernysheva
,
E. A.
, et al
,
2023
, “
Advanced Progress and Prospects for Producing High-Octane Gasoline Fuel Toward Market Development: State-of-the-Art and Outlook
,”
Energy Fuels
,
37
(
23
), pp.
18266
18290
.
11.
Masum
,
B. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Palash
,
S. M.
, and
Habibullah
,
M.
,
2015
, “
Effect of Alcohol–Gasoline Blends Optimization on Fuel Properties, Performance and Emissions of a SI Engine
,”
J. Clean. Prod.
,
86
, pp.
230
237
.
12.
Domínguez
,
S.
,
Valencia
,
A. M.
, and
Bustamante
,
F.
,
2022
, “
An Approach to the Assessment of Dimethyl Carbonate and Ethanol Effect as Gasoline Oxygenating Agents Under Engine Conditions Via a Computational Fluid Dynamics Model
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062307
.
13.
SubLaban
,
A.
,
Kessler
,
T. J.
,
Van Dam
,
N.
, and
Mack
,
J. H.
,
2023
, “
Artificial Neural Network Models for Octane Number and Octane Sensitivity: A Quantitative Structure Property Relationship Approach to Fuel Design
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
102302
.
14.
Badia
,
J. H.
,
Ramírez
,
E.
,
Bringué
,
R.
,
Cunill
,
F.
, and
Delgado
,
J.
,
2021
, “
New Octane Booster Molecules for Modern Gasoline Composition
,”
Energy Fuels
,
35
(
14
), pp.
10949
10997
.
15.
Monroe
,
E.
,
Gladden
,
J.
,
Albrecht
,
K. O.
,
Bays
,
J. T.
,
McCormick
,
R.
,
Davis
,
R. W.
, and
George
,
A.
,
2019
, “
Discovery of Novel Octane Hyperboosting Phenomenon in Prenol Biofuel/Gasoline Blends
,”
Fuel
,
239
, pp.
1143
1148
.
16.
Gainey
,
B.
,
Yan
,
Z.
, and
Lawler
,
B.
,
2021
, “
Autoignition Characterization of Methanol, Ethanol, Propanol, and Butanol Over a Wide Range of Operating Conditions in LTC/HCCI
,”
Fuel
,
287
, p.
119495
.
17.
Yuan
,
H.
,
Yang
,
Y.
,
Brear
,
M. J.
,
Foong
,
T. M.
, and
Anderson
,
J. E.
,
2017
, “
Optimal Octane Number Correlations for Mixtures of Toluene Reference Fuels (TRFs) and Ethanol
,”
Fuel
,
188
, pp.
408
417
.
18.
Badra
,
J.
,
AlRamadan
,
A. S.
, and
Sarathy
,
S. M.
,
2017
, “
Optimization of the Octane Response of Gasoline/Ethanol Blends
,”
Appl. Energy
,
203
, pp.
778
793
.
19.
Anderson
,
J. E.
,
Leone
,
T. G.
,
Shelby
,
M. H.
,
Wallington
,
T. J.
,
Bizub
,
J. J.
,
Foster
,
M.
,
Lynskey
,
M. G.
, and
Polovina
,
D.
,
2012
, “Octane Numbers of Ethanol-Gasoline Blends: Measurements and Novel Estimation Method from Molar Composition,” SAE Paper No. 2012-01-1274.
20.
Foong
,
T. M.
,
Morganti
,
K. J.
,
Brear
,
M. J.
,
da Silva
,
G.
,
Yang
,
Y.
, and
Dryer
,
F. L.
,
2014
, “
The Octane Numbers of Ethanol Blended With Gasoline and Its Surrogates
,”
Fuel
,
115
, pp.
727
739
.
21.
da Silva Jr
,
A.
,
Hauber
,
J.
,
Cancino
,
L. R.
, and
Huber
,
K.
,
2019
, “
The Research Octane Numbers of Ethanol-Containing Gasoline Surrogates
,”
Fuel
,
243
, pp.
306
313
.
22.
Anderson
,
J. E.
,
Kramer
,
U.
,
Mueller
,
S. A.
, and
Wallington
,
T. J.
,
2010
, “
Octane Numbers of Ethanol− and Methanol−Gasoline Blends Estimated From Molar Concentrations
,”
Energy Fuels
,
24
(
12
), pp.
6576
6585
.
23.
AlRamadan
,
A. S.
,
Sarathy
,
S. M.
,
Khurshid
,
M.
, and
Badra
,
J.
,
2016
, “
A Blending Rule for Octane Numbers of PRFs and TPRFs With Ethanol
,”
Fuel
,
180
, pp.
175
186
.
24.
Yuan
,
H.
,
Chen
,
Z.
,
Zhou
,
Z.
,
Yang
,
Y.
,
Brear
,
M. J.
, and
Anderson
,
J. E.
,
2020
, “
Formulating Gasoline Surrogate for Emulating Octane Blending Properties With Ethanol
,”
Fuel
,
261
, p.
116243
.
25.
Ershov
,
M. A.
,
Grigorieva
,
E. V.
,
Abdellatief
,
T. M. M.
,
Kapustin
,
V. M.
,
Abdelkareem
,
M. A.
,
Kamil
,
M.
, and
Olabi
,
A. G.
,
2021
, “
Hybrid Low-Carbon High-Octane Oxygenated Gasoline Based on Low-Octane Hydrocarbon Fractions
,”
Sci. Total Environ.
,
756
, p.
142715
.
26.
Wiesmann
,
F.
,
Han
,
D.
,
Qiu
,
Z.
,
Strauβ
,
L.
,
Rieβ
,
S.
,
Wensing
,
M.
, and
Lauer
,
T.
,
2024
, “
Numerical Study of Novel OME1–6 Combustion Mechanism and Spray Combustion at Changed Ambient Environments
,”
Front. Energy
,
18
(
4
), pp.
483
505
.
27.
Lovell
,
W. G.
,
1948
, “
Knocking Characteristics of Hydrocarbons
,”
Ind. Eng. Chem. Res.
,
40
(
12
), pp.
2388
2438
.
28.
Hamid
,
S. H.
, and
Ali
,
M. A.
,
1995
, “
Effect of MTBE Blending on the Properties of Gasoline
,”
Fuel Sci. Technol. Int.
,
13
(
5
), pp.
509
544
.
29.
Badra
,
J.
,
Alowaid
,
F.
,
Alhussaini
,
A.
,
Alnakhli
,
A.
, and
AlRamadan
,
A. S.
,
2022
, “
Understanding of the Octane Response of Gasoline/MTBE Blends
,”
Fuel
,
318
, p.
123647
.
30.
Ling
,
Z.
,
Burluka
,
A.
, and
Azimov
,
U.
,
2014
, “Knock Properties of Oxygenated Blends in Strongly Charged and Variable Compression Ratio Engines,” SAE Paper No. 2014-01-2608.
31.
Tian
,
M.
,
McCormick
,
R. L.
,
Ratcliff
,
M. A.
,
Luecke
,
J.
,
Yanowitz
,
J.
,
Glaude
,
P.-A.
,
Cuijpers
,
M.
, and
Boot
,
M. D.
,
2017
, “
Performance of Lignin Derived Compounds as Octane Boosters
,”
Fuel
,
189
, pp.
284
292
.
32.
Dhamodaran
,
G.
, and
Esakkimuthu
,
G. S.
,
2019
, “
Experimental Measurement of Physico-Chemical Properties of Oxygenate (DIPE) Blended Gasoline
,”
Measurement
,
134
, pp.
280
285
.
33.
Oppong
,
F.
,
Xu
,
C.
,
Li
,
X.
, and
Luo
,
Z.
,
2022
, “
Esters as a Potential Renewable Fuel: A Review of the Combustion Characteristics
,”
Fuel Process. Technol.
,
229
, p.
107185
.
34.
Verhelst
,
S.
,
Turner
,
J. W. G.
,
Sileghem
,
L.
, and
Vancoillie
,
J.
,
2019
, “
Methanol as a Fuel for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
70
, pp.
43
88
.
35.
Amine
,
M.
,
Mohammed
,
H. A.
, and
Barakat
,
Y.
,
2022
, “
Volatility Criteria and Physicochemical Properties of the Promising Dimethyl Carbonate-Gasoline Blends
,”
Sci. Rep.
,
12
(
1
), p.
17183
.
36.
Polikarpov
,
E.
,
Bays
,
J. T.
,
Lilga
,
M. A.
,
Guo
,
M. F.
, and
Gaspar
,
D. J.
,
2023
, “
The Effect of Chemical Functional Groups on the Octane Sensitivity of Fuel Blends for Spark-Ignited and Multimode Engines
,”
Fuel
,
352
, p.
129107
.
37.
Singh
,
E.
,
Shankar
,
V. S. B.
,
Tripathi
,
R.
,
Pitsch
,
H.
, and
Sarathy
,
S. M.
,
2018
, “
2-Methylfuran: A Bio-derived Octane Booster for Spark-Ignition Engines
,”
Fuel
,
225
, pp.
349
357
.
38.
Liang
,
X.
,
Duan
,
Y.
,
Fan
,
Y.
,
Huang
,
Z.
, and
Han
,
D.
,
2021
, “
Influences of C5 Esters Addition on Anti-knock and Auto-ignition Tendency of a Gasoline Surrogate Fuel
,”
Int. J. Engine Res.
,
23
(
10
), pp.
1782
1791
.
39.
Fan
,
Y.
,
Duan
,
Y.
,
Han
,
D.
,
Qiao
,
X.
, and
Huang
,
Z.
,
2019
, “
Influences of Isomeric Butanol Addition on Anti-knock Tendency of Primary Reference Fuel and Toluene Primary Reference Fuel Gasoline Surrogates
,”
Int. J. Engine Res.
,
22
(
1
), pp.
39
49
.
40.
Li
,
Y.
,
Alfazazi
,
A.
,
Mohan
,
B.
,
Alexandros Tingas
,
E.
,
Badra
,
J.
,
Im
,
H. G.
, and
Mani Sarathy
,
S.
,
2019
, “
Development of a Reduced Four-Component (Toluene/n-Heptane/Iso-Octane/Ethanol) Gasoline Surrogate Model
,”
Fuel
,
247
, pp.
164
178
.
41.
Fang
,
R.
,
Saggese
,
C.
,
Wagnon
,
S. W.
,
Sahu
,
A. B.
,
Curran
,
H. J.
,
Pitz
,
W. J.
, and
Sung
,
C.-J.
,
2022
, “
Effect of Nitric Oxide and Exhaust Gases on Gasoline Surrogate Autoignition: Iso-octane Experiments and Modeling
,”
Combust. Flame
,
236
, p.
111807
.
42.
Selim
,
H.
,
Mohamed
,
S. Y.
,
Hansen
,
N.
, and
Sarathy
,
S. M.
,
2017
, “
Premixed Flame Chemistry of a Gasoline Primary Reference Fuel Surrogate
,”
Combust. Flame
,
179
, pp.
300
311
.
43.
Zhao
,
X.
,
Wang
,
H.
,
Liu
,
D.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2021
, “
Effects of Octane Sensitivity on Knocking Combustion Under Modern SI Engine Operating Conditions
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5897
5904
.
44.
Kim
,
D.
,
Westbrook
,
C. K.
, and
Violi
,
A.
,
2019
, “
Two-Stage Ignition Behavior and Octane Sensitivity of Toluene Reference Fuels as Gasoline Surrogate
,”
Combust. Flame
,
210
, pp.
100
113
.
45.
Pera
,
C.
, and
Knop
,
V.
,
2012
, “
Methodology to Define Gasoline Surrogates Dedicated to Auto-ignition in Engines
,”
Fuel
,
96
, pp.
59
69
.
46.
Zhong
,
B.-J.
, and
Zheng
,
D.
,
2014
, “
A Chemical Mechanism for Ignition and Oxidation of Multi-component Gasoline Surrogate Fuels
,”
Fuel
,
128
, pp.
458
466
.
47.
McCormick
,
R. L.
,
Fioroni
,
G.
,
Fouts
,
L.
,
Christensen
,
E.
,
Yanowitz
,
J.
,
Polikarpov
,
E.
,
Albrecht
,
K.
,
Gaspar
,
D. J.
,
Gladden
,
J.
, and
George
,
A.
,
2017
, “
Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines
,”
SAE Int. J. Fuels Lubr.
,
10
(
2
), pp.
442
460
.
48.
Han
,
D.
,
Lyu
,
D.
,
Sun
,
Z.
,
Liang
,
X.
, and
Huang
,
Z.
,
2022
, “
On Knocking Combustion Development of Oxygenated Gasoline Fuels in a Cooperative Fuel Research Engine
,”
Int. J. Engine Res.
,
24
(
6
), pp.
2410
2421
.
49.
Wang
,
C.
,
Xu
,
H.
,
Daniel
,
R.
,
Ghafourian
,
A.
,
Herreros
,
J. M.
,
Shuai
,
S.
, and
Ma
,
X.
,
2013
, “
Combustion Characteristics and Emissions of 2-Methylfuran Compared to 2,5-Dimethylfuran, Gasoline and Ethanol in a DISI Engine
,”
Fuel
,
103
, pp.
200
211
.
You do not currently have access to this content.