Graphical Abstract Figure

The schematic diagram of the system: (a) concept of the application of the converter, (b) FIV converter, (c) closed view of the spring connection, (d) piezoelectric energy harvester, and (e) closed view of the guiding slot

Graphical Abstract Figure

The schematic diagram of the system: (a) concept of the application of the converter, (b) FIV converter, (c) closed view of the spring connection, (d) piezoelectric energy harvester, and (e) closed view of the guiding slot

Close modal

Abstract

Low-velocity water flow in oceans and rivers contains abundant energy that can be harnessed. In this article, energy from low-velocity flow is converted into the vibration of an underwater tube, which is elastically supported by two springs and can move along two guiding slots. Piezoelectric cantilever beams are mounted inside the tube to harvest the inertial vibration energy. Unlike other flow-induced vibration converters, in which the converters are perpendicular to the flow direction, in this article, an inclined converter structure is applied. It is found that the inclined structure is beneficial for exciting the vibration of the tube and offers a frequency up-conversion mechanism for the piezoelectric energy harvester. The theoretical analysis is developed and guiding equations are derived. To verify the design and analysis, a low-speed circulating water channel is designed and manufactured for experiments. The voltage and power outputs of the piezoelectric energy harvester are tested under different flow speeds, with different end masses. It is found that an optimal flow speed exists for the energy harvester. Experimental findings reveal that at a flow speed of 0.351 m/s, the peak-to-peak piezoelectric open-circuit voltage can reach 41 V and the generated power with one piezoelectric element is up to 57.3 μW.

References

1.
Rashki
,
M. R.
,
Hejazi
,
K.
,
Tamimi
,
V.
,
Zeinoddini
,
M.
,
Bagherpour
,
P.
, and
Aalami Harandi
,
M. M.
,
2023
, “
Electromagnetic Energy Harvesting From 2DOF-VIV of Circular Oscillators: Impacts of Soft Marine Fouling
,”
Energy
,
282
, p.
128964
.
2.
Hafizh
,
M.
,
Muthalif
,
A. G. A.
,
Renno
,
J.
,
Paurobally
,
M. R.
,
Bahadur
,
I.
,
Ouakad
,
H.
, and
Ali
,
M. S. M.
,
2023
, “
Vortex Induced Vibration Energy Harvesting Using Magnetically Coupled Broadband Circular-Array Piezoelectric Patch: Modelling, Parametric Study, and Experiments
,”
Energy Convers. Manage.
,
276
, p.
116559
.
3.
Hadi
,
F.
,
Yang
,
H. P.
, and
Traum
,
M. J.
,
2021
, “
Assessment of Performance of Tesla Turbine in Water Distribution Systems for Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042101
.
4.
Francis
,
S.
, and
Swain
,
A.
,
2024
, “
Modelling and Harnessing Energy From Flow-Induced Vibration, Particularly VIV and Galloping: An Explicit Review
,”
Ocean Eng.
,
312
(Part 3), p.
119290
.
5.
Yang
,
Y. C.
,
Jenet
,
F.
,
Xu
,
B.
,
Garza
,
J. C.
,
Tamayo
,
B.
,
Chavez
,
Y.
,
Reyes
,
O.
, and
Fuentes
,
S.
,
2020
, “
Experimental Study of a Lift-Type Wave Energy Converter Rotor in a Freewheeling Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031201
.
6.
Xing
,
J. T.
,
Rezaei
,
M.
,
Dai
,
H. L.
, and
Liao
,
W. H.
,
2023
, “
Investigating the Effect of Surface Protrusions on Galloping Energy Harvesting
,”
Appl. Phys. Lett.
,
122
(
15
), p.
153902
.
7.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
8.
Arias
,
F. J.
, and
De Las Heras
,
S.
,
2022
, “
Hydrocavitation Piezoelectric Ocean Wave Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
024503
.
9.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
.
10.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
.
11.
Sun
,
H.
,
Ma
,
C. H.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2017
, “
Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders in Flow Induced Motions: Effect of Spacing and Stiffness
,”
Renew. Energy
,
107
, pp.
61
80
.
12.
Lv
,
Y. F.
,
Sun
,
L. P.
,
Bernitsas
,
M. M.
, and
Sun
,
H.
,
2021
, “
A Comprehensive Review of Nonlinear Oscillators in Hydrokinetic Energy Harnessing Using Flow-Induced Vibrations
,”
Renew. Sustain. Energy Rev.
,
150
, p.
111388
.
13.
Li
,
N. Y.
,
Park
,
H.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2022
, “
Hydrokinetic Energy Conversion Using Flow Induced Oscillations of Single-Cylinder With Large Passive Turbulence Control
,”
Appl. Energy
,
308
, p.
118380
.
14.
Rostami
,
A. B.
, and
Armandei
,
M.
,
2017
, “
Renewable Energy Harvesting by Vortex-Induced Motions: Review and Benchmarking of Technologies
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
193
214
.
15.
Adnan
,
M.
,
Tahir
,
M. A.
,
Jamal
,
M. A.
,
Aslam
,
Z.
,
Irfan
,
T.
, and
Umer
,
M.
,
2022
, “
Design, Analysis, and Fabrication of Water Turbine for Slow-Moving Water
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082102
.
16.
Li
,
Z. H.
,
Roscow
,
J.
,
Khanbareh
,
H.
,
Haswell
,
G.
, and
Bowen
,
C.
,
2024
, “
Energy Harvesting From Water Flow by Using Piezoelectric Materials
,”
Adv. Energy Sustain. Res.
,
5
(
5
), p.
2300235
.
17.
Gao
,
S.
,
Ao
,
H. R.
, and
Jiang
,
H. Y.
,
2020
, “
Energy Harvesting Performance of Vertically Staggered Rectangle-Through-Holes Cantilever in Piezoelectric Vibration Energy Harvester
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104501
.
18.
Song
,
R. J.
,
Shan
,
X. B.
,
Lv
,
F. C.
, and
Xie
,
T.
,
2015
, “
A Study of Vortex-Induced Energy Harvesting From Water Using PZT Piezoelectric Cantilever With Cylindrical Extension
,”
Ceram. Int.
,
41
(S1), pp.
S768
S773
.
19.
Zhao
,
D. L.
,
Zhou
,
J.
,
Tan
,
T.
,
Yan
,
Z. M.
,
Sun
,
W. P.
,
Yin
,
J. L.
, and
Zhang
,
W. M.
,
2021
, “
Hydrokinetic Piezoelectric Energy Harvesting by Wake Induced Vibration
,”
Energy
,
220
, p.
119722
.
20.
Muthalif
,
A. G. A.
,
Hafizh
,
M.
,
Renno
,
J.
, and
Paurobally
,
M. R.
,
2022
, “
A Hybrid Piezoelectric-Electromagnetic Energy Harvester From Vortex-Induced Vibrations in Fluid-Flow; The Influence of Boundary Condition in Tuning the Harvester
,”
Energy Convers. Manage.
,
256
, p.
115371
.
21.
Sun
,
W. P.
,
Zhao
,
D. L.
,
Tan
,
T.
,
Yan
,
Z. M.
,
Guo
,
P. C.
, and
Luo
,
X. Q.
,
2019
, “
Low Velocity Water Flow Energy Harvesting Using Vortex Induced Vibration and Galloping
,”
Appl. Energy
,
251
, p.
113392
.
22.
Hu
,
Y. L.
,
Yang
,
B.
,
Chen
,
X.
,
Wang
,
X. L.
, and
Liu
,
J. Q.
,
2018
, “
Modeling and Experimental Study of a Piezoelectric Energy Harvester From Vortex Shedding-Induced Vibration
,”
Energy Convers. Manage.
,
162
, pp.
145
158
.
23.
Hafizh
,
M.
,
Muthalif
,
A. G. A.
,
Renno
,
J.
,
Paurobally
,
M. R.
, and
Mohamed Ali
,
M. S.
,
2023
, “
A Vortex-Induced Vibration-Based Self-Tunable Airfoil-Shaped Piezoelectric Energy Harvester for Remote Sensing Applications in Water
,”
Ocean Eng.
,
269
, p.
113467
.
24.
Arias
,
F. J.
, and
Heras
,
S. D.
,
2020
, “
Hydro Energy Harvesting by Using Compliant Surfaces: Preliminary Experimental Assessment
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
081306
.
25.
Zou
,
H. X.
,
Li
,
M.
,
Zhao
,
L. C.
,
Gao
,
Q. H.
,
Wei
,
K. X.
,
Zuo
,
L.
,
Qian
,
F.
, and
Zhang
,
W. M.
,
2021
, “
A Magnetically Coupled Bistable Piezoelectric Harvester for Underwater Energy Harvesting
,”
Energy
,
217
, p.
119429
.
26.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
27.
Facchinetti
,
M. L.
,
de Langre
,
E.
, and
Biolley
,
F.
,
2004
, “
Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
2
), pp.
123
140
.
28.
Abdelkefi
,
A.
,
Yan
,
Z. M.
, and
Hajj
,
M. R.
,
2013
, “
Modeling and Nonlinear Analysis of Piezoelectric Energy Harvesting From Transverse Galloping
,”
Smart Mater. Struct.
,
22
(
2
), p.
025016
.
29.
Guan
,
M. J.
, and
Liao
,
W. H.
,
2016
, “
Design and Analysis of a Piezoelectric Energy Harvester for Rotational Motion System
,”
Energy Convers. Manage.
,
111
, pp.
239
244
.
30.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
17
(
6
), p.
065016
.
31.
Du
,
X. Z.
,
Wang
,
Y.
,
Chen
,
H. X.
,
Li
,
C. C.
,
Han
,
Y.
,
Yurchenko
,
D.
,
Wang
,
J. L.
, and
Yu
,
H.
,
2022
, “
Vortex-Induced Piezoelectric Cantilever Beam Vibration for Ocean Wave Energy Harvesting Via Airflow From the Orifice of Oscillation Water Column Chamber
,”
Nano Energy
,
104
(Part A), p.
107870
.
You do not currently have access to this content.