Graphical Abstract Figure

Moisture-resistant Thermal Barrier Coatings

Graphical Abstract Figure

Moisture-resistant Thermal Barrier Coatings

Close modal

Abstract

Current thermal barrier coatings (TBCs), typically made of yttria-stabilized zirconia (YSZ), face challenges in the high-moisture, high-temperature environment during the combustion of hydrogen-enriched fuels. This is mainly due to YSZ's high ionic conductivity facilitating moisture transfer through the YSZ layer toward the underlying substrate. In this study, a thin alumina layer, deposited by atomic layer deposition (ALD), was added to the YSZ coating, and the effect of the ALD-alumina layer on the moisture resistance properties of YSZ coatings was investigated in the hydrogen-enriched flame zone of a swirl combustor. Three different coating configurations were prepared: YSZ-alone, YSZ with an alumina layer beneath it (YSZ/alumina), and YSZ with an alumina layer on top (alumina/YSZ). At 430 °C, the ionic conductivity of the YSZ/alumina and alumina/YSZ coatings was measured to be 4.33×106Sm1 and 1.34×107Sm1, respectively, which was 4–5 orders of magnitude lower than that for the YSZ coating. These coatings were tested in the flame zone with a temperature of 1248–1260 °C and a moisture concentration of about 18.1% for 15 min in the swirl combustor. Compared to the baseline YSZ-alone coating, the growth in thickness of the interfacial oxidation layer near the substrate was reduced by a factor of >2 for the YSZ/alumina coating and by a factor of >8 for the alumina/YSZ coating. The result showed that the thin ALD-alumina layer effectively acted as a barrier to moisture diffusion, primarily due to its extremely low ionic conductivity.

References

1.
Rajendran
,
R.
,
2012
, “
Gas Turbine Coatings—An Overview
,”
Eng. Fail. Anal.
,
26
(
4
), pp.
355
369
.
2.
National Research Council, Division on Engineering, Physical Sciences, National Materials Advisory Board, Commission on Engineering, Technical Systems, Committee on Coatings for High-Temperature Structural Materials
,
1996
,
Coatings for High-Temperature Structural Materials: Trends and Opportunities
,
National Academies Press
,
Washington, DC
.
3.
Pond
,
R. B.
, Jr
, and
Shifler
,
D. A.
,
2002
,
High-Temperature Corrosion-Related Failures, in Failure Analysis and Prevention
,
ASM International
,
Materials Park, OH
, pp.
868
880
.
4.
Deheri
,
C.
, and
Acharya
,
S. K.
,
2023
, “
Experimental Investigation of Biohythane Performance on Thermal Barrier-Coated Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
011702
.
5.
Liu
,
Q.
,
Huang
,
S.
, and
He
,
A.
,
2019
, “
Composite Ceramics Thermal Barrier Coatings of Yttria Stabilized Zirconia for Aero-engines
,”
J. Mater. Sci. Technol.
,
35
(
12
), pp.
2814
2823
.
6.
Pakseresht
,
A.
,
Sharifianjazi
,
F.
,
Esmaeilkhanian
,
A.
,
Bazli
,
L.
,
Nafchi
,
M. R.
,
Bazli
,
M.
, and
Kirubaharan
,
K.
,
2022
, “
Failure Mechanisms and Structure Tailoring of YSZ and New Candidates for Thermal Barrier Coatings: A Systematic Review
,”
Mater. Des.
,
222
(
1
), p.
111044
.
7.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.
8.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
9.
Stolle
,
R.
,
2004
,
Conventional and Advanced Coatings for Turbine Airfoils
,
MTU Aero Engines
,
Munich, Germany
.
10.
Qazi
,
U. Y.
,
2022
, “
Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications; Challenges and Expected Opportunities
,”
Energies
,
15
(
13
), p.
4741
.
11.
Salvo
,
E.
,
Sahin
,
M.
, and
Gupta
,
A.
,
2024
, “
Theoretical Evaluation of YSZ and Alumina-YSZ Thermal Barrier Coatings in a Hydrogen Enriched Combustion Environment
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
051901
.
12.
Chen
,
K.
,
Seo
,
D.
, and
Canteenwalla
,
P.
,
2021
, “
The Effect of High-Temperature Water Vapour on Degradation and Failure of Hot Section Components of Gas Turbine Engines
,”
Coatings
,
11
(
9
), p.
1061
.
13.
Shen
,
T.
,
Wu
,
Y.
,
Alahmadi
,
T. A.
,
Alharbi
,
S. A.
,
Maroušek
,
J.
,
Xia
,
C.
, and
Praveenkumar
,
T. R.
,
2023
, “
Assessment of Combustion and Acoustic Characteristics of Scenedesmus dimorphus Blended With Hydrogen Fuel on Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
052302
.
14.
Verma
,
S.
,
Kumar
,
K.
,
Das
,
L. M.
, and
Kaushik
,
S. C.
,
2021
, “
Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092301
.
15.
Elm
,
M. T.
,
Hofmann
,
J. D.
,
Suchomski
,
C.
,
Janek
,
J.
, and
Brezesinski
,
T.
,
2015
, “
Ionic Conductivity of Mesostructured Yttria-Stabilized Zirconia Thin Films With Cubic Pore Symmetry on the Influence of Water on the Surface Oxygen Ion Transport
,”
ACS Appl. Mater. Interfaces
,
7
(
22
), pp.
11792
11801
.
16.
Cao
,
X.
,
Vassen
,
R.
,
Wang
,
J.
,
Zou
,
B.
,
Li
,
S.
,
Hui
,
Y.
,
Yuan
,
J.
, et al
,
2020
, “
Degradation of Zirconia in Moisture
,”
Corros. Sci.
,
176
, p.
109038
.
17.
Ren
,
X.
, and
Pan
,
W.
,
2014
, “
Mechanical Properties of High-Temperature-Degraded Yttria-Stabilized Zirconia
,”
Acta Mater.
,
69
, pp.
397
406
.
18.
Saremi
,
M.
,
Afrasiabi
,
A.
, and
Kobayashi
,
A.
,
2008
, “
Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings After High Temperature Oxidation
,”
Surf. Coat. Technol.
,
202
(
14
), pp.
3233
3238
.
19.
Wu
,
N.
,
Chen
,
Z.
, and
Mao
,
S. X.
,
2005
, “
Hot Corrosion Mechanism of Composite Alumina/Yttria-Stabilized Zirconia Coating in Molten Sulfate–Vanadate Salt
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
675
682
.
20.
Leskelä
,
M.
, and
Ritala
,
M.
,
2002
, “
Atomic Layer Deposition (ALD): From Precursors to Thin Film Structures
,”
Thin Solid Films
,
409
(
1
), pp.
138
146
.
21.
Aarik
,
L.
,
Mändar
,
H.
,
Tarre
,
A.
,
Piirsoo
,
H. M.
, and
Aarik
,
J.
,
2022
, “
Mechanical Properties of Crystalline and Amorphous Aluminum Oxide Thin Films Grown by Atomic Layer Deposition
,”
Surf. Coat. Technol.
,
438
, p.
128409
.
22.
Tang
,
J.
,
Li
,
J.
,
Pishva
,
P.
,
Xie
,
R.
, and
Peng
,
Z.
,
2023
, “
Aqueous, Rechargeable Liquid Organic Hydrogen Carrier Battery for High-Capacity, Safe Energy Storage
,”
ACS Energy Lett.
,
8
(
9
), pp.
3727
3732
.
23.
Jung
,
H.
,
Kim
,
M.
,
Lee
,
Y.
,
Sim
,
G. B.
,
Gu
,
H.
,
Hong
,
S.
,
Lee
,
S.
, et al
,
2025
, “
Back-End-of-Line-Compatible Passivation of Sulfur Vacancies in MoS2 Transistors Using Electron-Withdrawing Benzenethiol
,”
ACS Nano
,
19
(
6
), pp.
6069
6078
.
24.
Watanabe
,
H.
,
Yamada
,
N.
, and
Okaji
,
M.
,
2004
, “
Linear Thermal Expansion Coefficient of Silicon From 293 to 1000 K
,”
Int. J. Thermophys.
,
25
(
1
), pp.
221
236
.
25.
Wachtman
J.
, Jr
,
Scuderi
,
T.
, and
Cleek
,
G.
,
1962
, “
Linear Thermal Expansion of Aluminum Oxide and Thorium Oxide From 100 to 1100 K
,”
J. Am. Ceram. Soc.
,
45
(
7
), pp.
319
323
.
26.
Lu
,
F.
,
Huang
,
W.
, and
Liu
,
H.
,
2019
, “
Mechanical Properties and Thermal Shock Resistance of 8YSZ–Al2O3 Composite Coatings With Different Thicknesses
,”
J. Therm. Spray Technol.
,
28
(
8
), pp.
1893
1905
.
27.
Gates
,
R.
,
Hsu
,
M.
, and
Klaus
,
E.
,
1989
, “
Tribochemical Mechanism of Alumina With Water
,”
Tribol. Trans.
,
32
(
3
), pp.
357
363
.
28.
Escarraga
,
A.
,
Toro
,
A.
,
Aguilar
,
Y.
,
Caicedo
,
J. C.
, and
Zambrano
,
G.
,
2018
, “
Thermal Cyclic Response of [8YSZ/Al2O3] n Multilayered Coatings Deposited Onto AISI 304 Stainless Steel
,”
Mater. Chem. Phys.
,
216
, pp.
526
533
.
29.
Hariyanto
,
B.
,
Wardani
,
D. A.
,
Kurniawati
,
N.
,
Har
,
N. P.
, and
Darmawan
,
N.
,
2021
, “
X-Ray Peak Profile Analysis of Silica by Williamson–Hall and Size-Strain Plot Methods
,”
J. Phys. Conf. Ser.
,
2019
(
1
), p.
012106
.
30.
Roncallo
,
G.
,
Barbareschi
,
E.
,
Cacciamani
,
G.
, and
Vacchieri
,
E.
,
2021
, “
Effect of Cooling Rate on Phase Transformation in 6–8 wt% YSZ APS TBCs
,”
Surf. Coat. Technol.
,
412
, p.
127071
.
31.
Cappella
,
A.
,
Battaglia
,
J. L.
,
Schick
,
V.
,
Kusiak
,
A.
,
Lamperti
,
A.
,
Wiemer
,
C.
, and
Hay
,
B.
,
2013
, “
High Temperature Thermal Conductivity of Amorphous Al2O3 Thin Films Grown by Low Temperature ALD
,”
Adv. Eng. Mater.
,
15
(
11
), pp.
1046
1050
.
32.
Takahashi
,
R.
,
Assis
,
J. M.
,
Neto
,
F. P.
, and
Reis
,
D. A.
,
2020
, “
Heat Treatment for TGO Growth on NiCrAlY for TBC Application
,”
Mater. Res. Express
,
6
(
12
), p.
126442
.
33.
Wei
,
Z.-Y.
,
Liu
,
Y.
,
Cheng
,
B.
, and
Tahir
,
A.
,
2022
, “
Influence of Non-uniform Feature of Thermally Grown Oxide Thickness on the Local Stress State and Cracking Behavior in TBC
,”
Surf. Coat. Technol.
,
443
, p.
128607
.
34.
Opitz
,
A. K.
, and
Fleig
,
J.
,
2010
, “
Investigation of O2 Reduction on Pt/YSZ by Means of Thin Film Microelectrodes: The Geometry Dependence of the Electrode Impedance
,”
Solid State Ionics
,
181
(
15–16
), pp.
684
693
.
35.
Schlupp
,
M. V.
,
Scherrer
,
B.
,
Ma
,
H.
,
Grolig
,
J. G.
,
Martynczuk
,
J.
,
Prestat
,
M.
, and
Gauckler
,
L. J.
,
2012
, “
Influence of Microstructure on the Cross-Plane Oxygen Ion Conductivity of Yttria Stabilized Zirconia Thin Films
,”
Phys. Status Solidi A
,
209
(
8
), pp.
1414
1422
.
36.
Öijerholm
,
J.
,
2004
, “
Ionic Transport of α-Alumina Below 1000 °C: An In-Situ Impedance Spectroscopy Study
,”
Doctoral dissertation
,
KTH, Matrials Science and Engineering Department
,
Stockholm, Sweden
.
You do not currently have access to this content.