Abstract

Biomass represents a significant renewable energy source. Pyrolysis is one method to directly convert biomass into thermochemical energy, with alkali and alkaline earth metals (AAEMs) content potentially improving energy efficiency. In this paper, thermogravimetric experiments were carried out on the samples after acid–base pretreatment, and the kinetics were analyzed using the Friedman, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose (KAS), and Kissinger methods at various heating rates. The results show that the KAS method is the most reliable among the four methods. As the conversion rate rose from 0.05 to 0.7, the activation energy of water, acid, alkali, and alkaline acid-treated samples calculated using the KAS method increased by 66.08, 42.20, 88.30, and 52.93 kJ/mol, respectively. Acid treatment can remove AAEMs from biomass, inhibit their initial decomposition, and enhance their subsequent decomposition. Alkali treatment can increase the carboxylate content, resulting in a lower activation energy. Nonetheless, the continuous increase in activation energy due to the breaking and reformation of Char–Na bonds hinders subsequent pyrolysis. Additionally, acid–base treatment alters the structure of biomass, leading to a general decrease in activation energy and facilitating its decomposition.

References

1.
Wei
,
J.
,
Gong
,
Y.
,
Guo
,
Q.
,
Chen
,
X.
,
Ding
,
L.
, and
Yu
,
G.
,
2019
, “
A Mechanism Investigation of Synergy Behaviour Variations During Blended Char Co-Gasification of Biomass and Different Rank Coals
,”
Renew. Energy
,
131
, pp.
597
605
.
2.
Gao
,
X.
,
Zhang
,
Y.
,
Li
,
B.
,
Xie
,
G.
, and
Zhao
,
W.
,
2018
, “
Experimental Investigation Into the Characteristics of Chars Obtained From Fast Pyrolysis of Different Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
044501
.
3.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2021
, “
Effect of Alkali and Alkaline Metals on Gas Formation Behavior and Kinetics During Pyrolysis of Pine Wood
,”
Fuel
,
290
, p.
120081
.
4.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2013
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
5.
Fahmy
,
T. Y. A.
,
Fahmy
,
Y.
,
Mobarak
,
F.
,
El-Sakhawy
,
M.
, and
Abou-Zeid
,
R. E.
,
2020
, “
Biomass Pyrolysis: Past, Present, and Future
,”
Environ. Dev. Sustain.
,
22
(
1
), pp.
17
32
.
6.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Towards Enhanced Understanding of Synergistic Effects in Co-Pyrolysis of Pinewood and Polycarbonate
,”
Appl. Energy
,
289
, p.
116662
.
7.
Toor
,
S. S.
,
Rosendahl
,
L.
, and
Rudolf
,
A.
,
2011
, “
Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies
,”
Energy
,
36
(
5
), pp.
2328
2342
.
8.
Mahfud
,
F. H.
,
Melian-Cabrera
,
I.
,
Manurung
,
R.
, and
Heeres
,
H. J.
,
2007
, “
Biomass to Fuels: Upgrading of Flash Pyrolysis Oil by Reactive Distillation Using a High Boiling Alcohol and Acid Catalysts
,”
Process Saf. Environ. Protect.
,
85
(
5
), pp.
466
472
.
9.
Kan
,
T.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2016
, “
Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters
,”
Renew. Sust. Energ. Rev.
,
57
, pp.
1126
1140
.
10.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Prog. Energy Combust. Sci.
,
62
, pp.
33
86
.
11.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Lee
,
D. H.
, and
Zheng
,
C.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12–13
), pp.
1781
1788
.
12.
Worasuwannarak
,
N.
,
Sonobe
,
T.
, and
Tanthapanichakoon
,
W.
,
2007
, “
Pyrolysis Behaviors of Rice Straw, Rice Husk, and Corncob by TG-MS Technique
,”
J. Anal. Appl. Pyrolysis
,
78
, pp.
265
271
.
13.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2022
, “
Acid and Alkali Pretreatment Effects on CO2-Assisted Gasification of Pinewood
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
022306
.
14.
Ye
,
X.
,
Li
,
J.
,
Lu
,
W.
,
Liu
,
X.
,
Wang
,
Z.
, and
Liang
,
C.
,
2024
, “
Effect of Alkali and Alkaline Earth Metallic Species on Gas Evolution and Energy Efficiency Evolution in Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
146
(
2
), p.
021501
.
15.
Nik-Azar
,
M.
,
Hajaligol
,
M. R.
,
Sohrabi
,
M.
, and
Dabir
,
B.
,
1997
, “
Mineral Matter Effects in Rapid Pyrolysis of Beech Wood
,”
Fuel Process. Technol.
,
51
(
1–2
), pp.
7
17
.
16.
Wang
,
K.
,
Zhang
,
J.
,
Shanks
,
B. H.
, and
Brown
,
R. C.
,
2015
, “
The Deleterious Effect of Inorganic Salts on Hydrocarbon Yields From Catalytic Pyrolysis of Lignocellulosic Biomass and Its Mitigation
,”
Appl. Energy
,
148
, pp.
115
120
.
17.
Cen
,
K.
,
Cao
,
X.
,
Chen
,
D.
,
Zhou
,
J.
,
Chen
,
F.
, and
Li
,
M.
,
2020
, “
Leaching of Alkali and Alkaline Earth Metallic Species (AAEMS) With Phenolic Substances in Bio-Oil and Its Effect on Pyrolysis Characteristics of Moso Bamboo
,”
Fuel Process. Technol.
,
200
, p.
106332
.
18.
Zhang
,
S.
,
Dong
,
Q.
,
Zhang
,
L.
,
Xiong
,
Y.
,
Liu
,
X.
, and
Zhu
,
S.
,
2015
, “
Effects of Water Washing and Torrefaction Pretreatments on Rice Husk Pyrolysis by Microwave Heating
,”
Bioresour. Technol.
,
193
, pp.
442
448
.
19.
Tan
,
H.
, and
Wang
,
S.
,
2009
, “
Experimental Study of the Effect of Acid-Washing Pretreatment on Biomass Pyrolysis
,”
J. Fuel Chem. Technol.
,
37
(
6
), pp.
668
672
.
20.
Wang
,
X.
,
Chen
,
H.
,
Luo
,
K.
,
Shao
,
J.
, and
Yang
,
H.
,
2008
, “
The Influence of Microwave Drying on Biomass Pyrolysis
,”
Energy Fuels
,
22
(
1
), pp.
67
74
.
21.
Di Blasi
,
C.
,
Branca
,
C.
,
Galgano
,
A.
, and
Gallo
,
B.
,
2015
, “
Role of Pretreatments in the Thermal Runaway of Hazelnut Shell Pyrolysis
,”
Energy Fuels
,
29
(
4
), pp.
2514
2526
.
22.
Zhang
,
Z.
,
Zhu
,
M.
,
Hobson
,
P.
,
Doherty
,
W.
, and
Zhang
,
D.
,
2018
, “
Contrasting the Pyrolysis Behavior of Selected Biomass and the Effect of Lignin
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062201
.
23.
Varma
,
A. K.
, and
Mondal
,
P.
,
2016
, “
Physicochemical Characterization and Pyrolysis Kinetic Study of Sugarcane Bagasse Using Thermogravimetric Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052205
.
24.
Ratnasari
,
D. K.
,
Horn
,
A.
,
Brunner
,
T.
,
Yang
,
W.
, and
Jönsson
,
P. G.
,
2019
, “
The Thermal Degradation of Lignocellulose Biomass With an Acid Leaching Pre-Treatment Using a H-ZSM-5/AL-MCM-4L Catalyst Mixture
,”
Fuel
,
257
, p.
116086
.
25.
Chen
,
D.
,
Gao
,
D.
,
Huang
,
S.
,
Capareda
,
S. C.
,
Liu
,
X.
,
Wang
,
Y.
,
Zhang
,
T.
,
Liu
,
Y.
, and
Niu
,
W.
,
2021
, “
Influence of Acid-Washed Pretreatment on the Pyrolysis of Corn Straw: A Study on Characteristics, Kinetics and Bio-Oil Composition
,”
J. Anal. Appl. Pyrolysis
,
155
.
26.
Siddiqi
,
M. H.
,
Liu
,
X.
,
Hussain
,
M. A.
,
Qureshi
,
T.
,
Tabish
,
A. N.
,
Lateef
,
H. U.
,
Zeb
,
H.
,
Farooq
,
M.
,
Nawaz
,
S.
, and
Nawaz
,
S.
,
2022
, “
Evaluation of Physiochemical, Thermal and Kinetic Properties of Wheat Straw by Demineralising With Leaching Reagents for Energy Applications
,”
Energy
,
238
, p.
122013
.
27.
Eom
,
I.-Y.
,
Kim
,
J.-Y.
,
Lee
,
S.-M.
,
Cho
,
T.-S.
,
Choi
,
I.-G.
, and
Choi
,
J.-W.
,
2012
, “
Study on the Thermal Decomposition Features and Kinetics of Demineralized and Inorganic Metal-Impregnated Lignocellulosic Biomass
,”
J. Ind. Eng. Chem.
,
18
(
6
), pp.
2069
2075
.
28.
Kumar
,
M.
,
Mishra
,
P. K.
, and
Upadhyay
,
S. N.
,
2020
, “
Thermal Degradation of Rice Husk: Effect of Pre-Treatment on Kinetic and Thermodynamic Parameters
,”
Fuel
,
268
, p.
117164
.
29.
Yin
,
Y.
,
Yin
,
J.
,
Zhang
,
W.
,
Tian
,
H.
,
Hu
,
Z.
,
Ruan
,
M.
,
Song
,
Z.
, and
Liu
,
L.
,
2018
, “
Effect of Char Structure Evolution During Pyrolysis on Combustion Characteristics and Kinetics of Waste Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072203
.
30.
Zhang
,
S.
,
Zhu
,
S.
,
Zhang
,
H.
,
Liu
,
X.
, and
Zhang
,
H.
,
2019
, “
Evaluation of Pyrolysis Behavior and Products Properties of Rice Husk After Combined Pretreatment of Washing and Torrefaction
,”
Biomass Bioenerg.
,
127
,
105293
.
31.
Cai
,
J.
,
Wu
,
W.
, and
Liu
,
R.
,
2014
, “
An Overview of Distributed Activation Energy Model and Its Application in the Pyrolysis of Lignocellulosic Biomass
,”
Renew. Sust. Energ. Rev.
,
36
, pp.
236
246
.
32.
Soria-Verdugo
,
A.
,
Goos
,
E.
,
Garcia-Hernando
,
N.
, and
Riedel
,
U.
,
2018
, “
Analyzing the Pyrolysis Kinetics of Several Microalgae Species by Various Differential and Integral Isoconversional Kinetic Methods and the Distributed Activation Energy Model
,”
Algal Res.
,
32
, pp.
11
29
.
33.
Xu
,
Q.
,
Ma
,
X.
,
Yu
,
Z.
, and
Cai
,
Z.
,
2014
, “
A Kinetic Study on the Effects of Alkaline Earth and Alkali Metal Compounds for Catalytic Pyrolysis of Microalgae Using Thermogravimetry
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
357
361
.
34.
Li
,
P.
,
Yang
,
Y.
,
Li
,
J.
,
Miao
,
G.
,
Zheng
,
K.
, and
Wang
,
Y.
,
2021
, “
Study on the Oxidation Thermal Kinetics of the Spontaneous Combustion Characteristics of Water-Immersed Coal
,”
Thermochim. Acta
,
699
, p.
178914
.
35.
Liu
,
L.
,
Yuan
,
Y.
,
Kumar
,
S.
,
Wang
,
Z.
,
He
,
Y.
,
Lv
,
Y.
,
Liu
,
J.
,
Gul-E-Rana
,
J.
, and
Cen
,
K.
,
2018
, “
Catalytic Effect of Metal Chlorides on Coal Pyrolysis and Gasification Part II. Effects of Acid Washing on Coal Characteristics
,”
Thermochim. Acta
,
666
, pp.
41
50
.
36.
Mourant
,
D.
,
Wang
,
Z.
,
He
,
M.
,
Wang
,
X. S.
,
Garcia-Perez
,
M.
,
Ling
,
K.
, and
Li
,
C.-Z.
,
2011
, “
Mallee Wood Fast Pyrolysis: Effects of Alkali and Alkaline Earth Metallic Species on the Yield and Composition of Bio-Oil
,”
Fuel
,
90
(
9
), pp.
2915
2922
.
You do not currently have access to this content.