Abstract

Organic Rankine Cycle (ORC) is a promising solution for reducing the environmental impact of electricity production. It operates with waste heat from industrial processes and uses low and medium-temperature heat sources. The originality of this work lies not only in conducting an energy analysis of basic and regenerative ORC but also in performing exergy analysis to identify the processes responsible for exergy destruction and losses. It also compares both configurations regarding energy efficiency, exergy efficiency, network, heat required, and exergy destruction rate. Matlab Software runs the simulation using the Coolprop open-source library. These parametric investigations and thermodynamic modelings were undertaken on six working fluids (R113, R134a, R600, R290, R1234yf, and HFE-143 m). Results show a maximum improvement of 17.8% in thermal efficiency and 17.6% in exergy efficiency when transitioning from the basic to the regenerative configuration. Furthermore, the regenerative configuration has about 43% less exergy destruction compared to the basic configuration.

References

1.
International Energy Agency
,
2021
, “
Global Energy Review: CO2 Emissions in 2021
,” https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021
2.
Kumar
,
A.
,
Gupta
,
P. R.
,
Tiwari
,
A. K.
, and
Said
,
Z.
,
2022
, “
Performance Evaluation of Small Scale Solar Organic Rankine Cycle Using MWCNT+ R141b Nanorefrigerant
,”
Energy Convers. Manage.
,
260
, p.
115631
.
3.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.
4.
Fergani
,
Z.
,
Morosuk
,
T.
, and
Touil
,
D.
,
2020
, “
Performances Optimization and Comparison of Two Organic Rankine Cycles for Cogeneration in the Cement Plant
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
022001
.
5.
Jiménez-García
,
J. C.
,
Ruiz
,
A.
,
Pacheco-Reyes
,
A.
, and
Rivera
,
W.
,
2023
, “
A Comprehensive Review of Organic Rankine Cycles
,”
Processes
,
11
(
7
), p.
1982
.
6.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
.
7.
Peng
,
B.
,
Liu
,
S.
,
Liu
,
H.
, and
Zhou
,
T.
,
2021
, “
Performance Analysis of ORC Low Temperature Waste Heat Power Generation System
,”
J. Phys.: Conf. Ser.
,
2009
(
1
), p.
012023
.
8.
Rettig
,
A.
,
Lagler
,
M.
,
Lamare
,
T.
,
Li
,
S.
,
Mahadea
,
V.
,
McCallion
,
S.
, and
Chernushevich
,
J.
,
2011
, “Application of Organic Rankine Cycles (ORC),”
World Engineers, Convention
, Geneva, Sept. 4–9, pp.
1
10
.
9.
Manuel du Protocole de Montréal relatif à des substances qui appauvrissent la couche d'ozone,
2017
, 11th edition, Nairobi, Kenya.
10.
Blondel
,
Q.
,
2021
, “
Etude et Optimisation énergétique des Mélanges Zéotropes Pour les Cycles Thermodynamiques de Rankine
,”
Ph.D. thesis
,
Université Grenoble Alpes
,
France
.
11.
Protocol
,
K
.,
1997
, “
Kyoto Protocol
,” UNFCCC Website, pp.
230
240
. http://unfccc.int
12.
United Nations Climate Change
,
2008
, https://www.un.org/en/climatechange
13.
Uusitalo
,
A.
,
Honkatukia
,
J.
,
Turunen-Saaresti
,
T.
, and
Grönman
,
A.
,
2018
, “
Thermodynamic Evaluation on the Effect of Working Fluid Type and Fluids Critical Properties on Design and Performance of Organic Rankine Cycles
,”
J. Cleaner Prod.
,
188
, pp.
253
263
.
14.
Imran
,
M.
,
Usman
,
M.
,
Park
,
B.-S.
, and
Yang
,
Y.
,
2016
, “
Comparative Assessment of Organic Rankine Cycle Integration for Low Temperature Geothermal Heat Source Applications
,”
Energy
,
102
, pp.
473
490
.
15.
Li
,
G.
,
2016
, “
Organic Rankine Cycle Performance Evaluation and Thermoeconomic Assessment With Various Applications Part I: Energy and Exergy Performance Evaluation
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
477
499
.
16.
Wang
,
Y.
,
Zhao
,
J.
,
Wang
,
Y.
, and
An
,
Q.
,
2017
, “
Multi-Objective Optimization and Grey Relational Analysis on Configurations of Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
114
, pp.
1355
1363
.
17.
Li
,
G.
,
2016
, “
Organic Rankine Cycle Performance Evaluation and Thermos-Economic Assessment With Various Applications Part II: Economic Assessment Aspect
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
490
505
.
18.
Nondy
,
J.
, and
Gogoi
,
T.
,
2021
, “
Exergoeconomic Investigation and Multi-Objective Optimization of Different ORC Configurations for Waste Heat Recovery: A Comparative Study
,”
Energy Convers. Manage.
,
245
, p.
114593
.
19.
Zhar
,
R.
,
Allouhi
,
A.
,
Jamil
,
A.
, and
Lahrech
,
K.
,
2021
, “
A Comparative Study and Sensitivity Analysis of Different ORC Configurations for Waste Heat Recovery
,”
Case Stud. Therm. Eng
,
28
, p.
101608
.
20.
Javed
,
S.
, and
Tiwari
,
A. K.
,
2023
, “
Performance Assessment of Different Organic Rankine Cycle (ORC) Configurations Driven by Solar Energy
,”
Process Saf. Environ. Prot.
,
171
, pp.
655
666
.
21.
Canbolat
,
A.
,
Bademlioglu
,
A.
, and
Kaynakli
,
O.
,
2023
, “
A Modeling of Electricity Generation by Using Geothermal Assisted Organic Rankine Cycle With Internal Heat Recovery
,”
Energy Sources, Part A: Recovery, Util. Environ. Eff.
,
45
(
1
), pp.
212
228
.
22.
Mago
,
P. J.
,
Chamra
,
L. M.
,
Srinivasan
,
K.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Regenerative Organic Rankine Cycles Using Dry Fluids
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
998
1007
.
23.
Peng
,
Y.
,
Lin
,
X.
,
Liu
,
J.
,
Su
,
W.
, and
Zhou
,
N.
,
2021
, “
Machine Learning Prediction of ORC Performance Based on Properties of Working Fluid
,”
Appl. Therm. Eng.
,
195
, p.
117184
.
24.
Zhao
,
X.
,
Yang
,
S.
,
Liu
,
Z.
,
Wang
,
D.
,
Du
,
Z.
, and
Ren
,
J.
,
2024
, “
Optimization and Exergoeconomic Analysis of a Solar-Powered ORC-VCR-CCHP System Based on a Ternary Refrigerant Selection Model
,”
Energy
,
290
, p.
129976
.
25.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2020
, “
Investigation of the Liquid–Vapor Separator Efficiency on the Performance of the Ejector Used as an Expansion Device in the Vapor-Compression Refrigeration Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012003
.
26.
Modi
,
N.
,
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2019
, “
Advanced Exergetic Assessment of a Vapor Compression Cycle With Alternative Refrigerants
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092002
.
27.
Zhang
,
L.
,
Pan
,
Z.
,
Zhang
,
Z.
,
Shang
,
L.
,
Wen
,
J.
, and
Chen
,
S.
,
2018
, “
Thermodynamic and Economic Analysis Between Organic Rankine Cycle and Kalina Cycle for Waste Heat Recovery From Steam-Assisted Gravity Drainage Process in Oilfield
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122005
.
28.
Vidhi
R.
,
Kuravi
S.
,
Yogi Goswami
D.
,
Stefanakos
E.
, and
Sabau
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
ASME J. Energy Resour. Technol.
135
(
4
), p.
042002
.
29.
E Elahi
,
A.
,
Mahmud
,
T.
,
Alam
,
M.
,
Hossain
,
J.
, and
Biswas
,
B. N.
,
2022
, “
Exergy Analysis of Organic Rankine Cycle for Waste Heat Recovery Using Low GWP Refrigerants
,”
Int. J. Thermofluids
,
16
, p.
100243
.
You do not currently have access to this content.