Abstract

Diesel engines are extensively used in heavy-duty transportation, power generation, and marine vehicles due to their superior thermal efficiency and extended high-load operability compared to spark ignition (SI) engines. However, combustion in diesel engines is generally characterized by locally rich fuel–air mixtures and high combustion temperatures, causing significant amounts of soot and NOx emissions from these engines. Utilizing carbon-free alternative fuels and enhancing fuel efficiency represent promising strategies to mitigate greenhouse gas (GHG) and other emissions in the heavy-duty transportation sector. In this context, ammonia (NH3), as a hydrogen carrier, has received significant attention as a viable substitute for hydrocarbon fuels due to its carbon-free composition, relatively high energy density, and well-established infrastructure. Many previous studies have considered combustion and emission characteristics of ammonia-hydrocarbon fuel blends in engines and simplified flames. But, detailed investigations on the effects of ammonia on the performance of hydrocarbon fuels under engine conditions are lacking. In the present study, we perform large eddy simulations (LES) of the ignition and flame processes in a constant-volume combustion reactor, where n-heptane is injected in an ammonia/air ambient mixture in a diesel-like environment. A detailed and validated reaction mechanism containing 302 species and 1981 reactions is employed. The Engine Combustion Network Spray H experimental data is used to validate the spray model under both non-reacting and reacting conditions. Dual-fuel combustion is simulated using the well-stirred reactor (WSR) approach. Results are presented for two spray cases: (1) single fuel (SF) with n-heptane injected into a mixture of air and combustion products and (2) dual-fuel (DF) with the injection of n-heptane in a mixture of air, ammonia, and combustion products. It is observed that the presence of ammonia has a significant effect on the ignition and flame development processes. With ammonia addition, both the first- and second-stage ignition delay times increase, but the effect of ammonia on the second-stage ignition is significantly more prominent. In addition, the ignition kernel size and growth rate decrease noticeably. For SF spray, the main ignition is characterized by multiple ignition kernels near the spray tip, whereas for DF spray, a single relatively small ignition kernel forms and grows slowly in the downstream direction. The flame development and the final quasi-steady flame structure are also modified due to ammonia. The outcome of this research would enable a better understanding of ammonia–diesel dual-fuel spray flame behavior and guide the development of associated engine combustion strategies.

References

1.
Liu
,
J.
,
Wang
,
X.
,
Zhao
,
W.
,
Sun
,
P.
, and
Ji
,
Q.
,
2024
, “
Effects of Ammonia Energy Fraction and Diesel Injection Parameters on Combustion Stability and GHG Emissions Characteristics in a Low-Loaded Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
360
, p.
130544
.
2.
White
,
C.
,
Steeper
,
R.
, and
Lutz
,
A.
,
2006
, “
The Hydrogen-Fueled Internal Combustion Engine: A Technical Review
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1292
1305
.
3.
Dimitriou
,
P.
, and
Tsujimura
,
T.
,
2019
, “
A Fully Renewable and Efficient Backup Power System With a Hydrogen-Biodiesel-Fueled IC Engine
,”
Energy Procedia
,
157
, pp.
1305
1319
.
4.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2020
, “
Experimental Study on Ammonia/Hydrogen/Air Combustion in Spark Ignition Engine Conditions
,”
Fuel
,
269
, p.
117448
.
5.
Wan
,
Z.
,
Tao
,
Y.
,
Shao
,
J.
,
Zhang
,
Y.
, and
You
,
H.
,
2021
, “
Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells
,”
Energy Convers. Manage.
,
228
, p.
113729
.
6.
Shin
,
J.
, and
Park
,
S.
,
2023
, “
Numerical Analysis for Optimizing Combustion Strategy in an Ammonia-Diesel Dual-Fuel Engine
,”
Energy Convers. Manage.
,
284
, p.
116980
.
7.
Feng
,
Y.
,
Zhu
,
J.
,
Mao
,
Y.
,
Raza
,
M.
,
Qian
,
Y.
,
Yu
,
L.
, and
Lu
,
X.
,
2020
, “
Low-Temperature Auto-Ignition Characteristics of NH3/Diesel Binary Fuel: Ignition Delay Time Measurement and Kinetic Analysis
,”
Fuel
,
281
, p.
118761
.
8.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Approximation of Laminar Flame Characteristics on Premixed Ammonia/Hydrogen/Nitrogen/Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
224
, pp.
366
378
.
9.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.
10.
Garabedian
,
C. G.
, and
Johnson
,
J. H.
,
1966
,
Theory of Operation of an Ammonia Burning Internal Combustion Engine
,
Army Tank-Automotive Center
,
Warren
, U.S.C.F.S.T.I., AD Rep. (United States) 41:15, pp.
333
348
.
11.
Gray
,
J. T.
,
Dimitroff
,
E.
,
Meckel
,
N. T.
, and
Quillian
,
R. D.
,
1966
, “Ammonia Fuel—Engine Compatibility and Combustion,” SAE Technical Paper No. 660156.
12.
Haputhanthri
,
S. O.
,
Maxwell
,
T. T.
,
Fleming
,
J.
, and
Austin
,
C.
,
2015
, “
Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062201
13.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.
14.
Chiong
,
M.-C.
,
Chong
,
C. T.
,
Ng
,
J.-H.
,
Mashruk
,
S.
,
Chong
,
W. W. F.
,
Samiran
,
N. A.
,
Mong
,
G. R.
, and
Valera-Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.
15.
Mounaïm-Rousselle
,
C.
,
Bréquigny
,
P.
,
Dumand
,
C.
, and
Houillé
,
S.
,
2021
, “
Operating Limits for Ammonia Fuel Spark-Ignition Engine
,”
Energies (Basel)
,
14
(
14
), p.
4141
.
16.
De Vries
,
N.
,
2019
, “
Safe and Effective Application of Ammonia as a Marine Fuel
,”
Proceedings of the 2019 AIChE Annual Meeting
,
Orlando, FL
,
Nov. 13
,
AIChE
.
17.
MAN Energy Solutions
,
2021
,
MAN B&W Two-Stroke Engine Operating on Ammonia
,
MAN Energy Solutions
.
18.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Eng. Res.
,
12
(
3
), pp.
209
226
.
19.
Jin
,
S.
,
Wu
,
B.
,
Zi
,
Z.
,
Yang
,
P.
,
Shi
,
T.
, and
Zhang
,
J.
,
2023
, “
Effects of Fuel Injection Strategy and Ammonia Energy Ratio on Combustion and Emissions of Ammonia-Diesel Dual-Fuel Engine
,”
Fuel
,
341
, p.
127668
.
20.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Liko
,
B.
, and
Lafrance
,
S.
,
2022
, “
Effects of Ammonia Energy Fraction and Diesel Injection Timing on Combustion and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
314
, p.
122723
.
21.
Nadimi
,
E.
,
Przybyła
,
G.
,
Lewandowski
,
M. T.
, and
Adamczyk
,
W.
,
2023
, “
Effects of Ammonia on Combustion, Emissions, and Performance of the Ammonia/Diesel Dual-Fuel Compression Ignition Engine
,”
J. Energy Inst.
,
107
, p.
101158
.
22.
Shin
,
J.
, and
Park
,
S.
,
2024
, “
Numerical Analysis and Optimization of Combustion and Emissions in an Ammonia-Diesel Dual-Fuel Engine Using an Ammonia Direct Injection Strategy
,”
Energy
,
289
, p.
130014
.
23.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Lafrance
,
S.
, and
Liko
,
B.
,
2022
, “
A Study on Split Diesel Injection on Thermal Efficiency and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
316
, p.
123412
.
24.
Li
,
T.
,
Zhou
,
X.
,
Wang
,
N.
,
Wang
,
X.
,
Chen
,
R.
,
Li
,
S.
, and
Yi
,
P.
,
2022
, “
A Comparison Between Low- and High-Pressure Injection Dual-Fuel Modes of Diesel-Pilot-Ignition Ammonia Combustion Engines
,”
J. Energy Inst.
,
102
, pp.
362
373
.
25.
Yu
,
L.
,
Zhou
,
W.
,
Feng
,
Y.
,
Wang
,
W.
,
Zhu
,
J.
,
Qian
,
Y.
, and
Lu
,
X.
,
2020
, “
The Effect of Ammonia Addition on the Low-Temperature Autoignition of n-Heptane: An Experimental and Modeling Study
,”
Combust. Flame
,
217
, pp.
4
11
.
26.
Dong
,
S.
,
Wang
,
B.
,
Jiang
,
Z.
,
Li
,
Y.
,
Gao
,
W.
,
Wang
,
Z.
,
Cheng
,
X.
, and
Curran
,
H. J.
2022
, “
An Experimental and Kinetic Modeling Study of Ammonia/n-Heptane Blends
,”
Combust. Flame
,
246
, p.
112428
.
27.
Song
,
M.
,
Wang
,
Q.
,
Wang
,
Z.
,
Fang
,
Y.
,
Qu
,
W.
,
Gong
,
Z.
, and
Feng
,
L.
,
2024
, “
Auto-Ignition Characteristics and Chemical Reaction Mechanism of Ammonia/n-Heptane Mixtures With Low n-Heptane Content
,”
Fuel
,
364
, p.
131011
.
28.
Wang
,
B.
,
Dong
,
S.
,
Jiang
,
Z.
,
Gao
,
W.
,
Wang
,
Z.
,
Li
,
J.
,
Yang
,
C.
,
Wang
,
Z.
, and
Cheng
,
X.
,
2023
, “
Development of a Reduced Chemical Mechanism for Ammonia/n-Heptane Blends
,”
Fuel
,
338
, p.
127358
.
29.
Suresh
,
R.
,
Kalvakala
,
K. C.
, and
Aggarwal
,
S. K.
,
2024
, “
A Numerical Study of NOX and Soot Emissions in Ethylene-Ammonia Diffusion Flames With Oxygen Enrichment
,”
Fuel
,
362
, p.
130834
.
30.
Bennett
,
A. M.
,
Liu
,
P.
,
Li
,
Z.
,
Kharbatia
,
N. M.
,
Boyette
,
W.
,
Masri
,
A. R.
, and
Roberts
,
W. L.
,
2020
, “
Soot Formation in Laminar Flames of Ethylene/Ammonia
,”
Combust. Flame
,
220
, pp.
210
218
.
31.
Zhao
,
W.
,
Li
,
G.
,
Sun
,
T.
,
Zhang
,
Y.
,
Zhou
,
L.
, and
Wei
,
H.
,
2023
, “
Numerical Study on the Ignition and Flame Propagation of Ammonia/n-Heptane Dual Fuels
,”
Energy Fuels
,
37
(
17
), pp.
13354
13365
.
32.
Zhang
,
K.
,
Xu
,
Y.
,
Qin
,
L.
,
Liu
,
Y.
,
Wang
,
H.
,
Liu
,
Y.
, and
Cheng
,
X.
,
2022
, “
Experimental and Numerical Study of Soot Volume Fraction and Number Density in Laminar Co-Flow Diffusion Flames of n-Decane/n-Butanol Blends
,”
Fuel
,
330
, p.
125620
.
33.
Wang
,
Y.
, and
Wang
,
P.
,
2022
, “
Numerical Investigation on the n-Heptane Spray Flame at Hydrous Ethanol Premixed Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102301
.
34.
Lou
,
D.
,
Tang
,
Y.
,
Wang
,
C.
,
Fang
,
L.
, and
Zhang
,
Y.
,
2022
, “
Study of Diesel Spray Impinging Ignition and Combustion Characteristics Under Variable Ambient Densities Based on the Visualization Experiment
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102303
.
35.
Moiz
,
A. A.
,
Cung
,
K. D.
, and
Lee
,
S.-Y.
,
2017
, “
Simultaneous Schlieren–PLIF Studies for Ignition and Soot Luminosity Visualization With Close-Coupled High-Pressure Double Injections of n-Dodecane
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012207
.
36.
Engine Combustion Network (ECN)
. Diesel sprays data search utility. http://WwwSandiaGov/Ecn/Cvdata/Dsearch/FramesetPhp n.d.
37.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2023
, “CONVERGE 3.1,” Convergent Science.
38.
Kahila
,
H.
,
Wehrfritz
,
A.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2019
, “
Large-Eddy Simulation of Dual-Fuel Ignition: Diesel Spray Injection Into a Lean Methane-Air Mixture
,”
Combust. Flame
,
199
, pp.
131
151
.
39.
Bao
,
H.
,
Han
,
J.
,
Zhang
,
Y.
,
Di Matteo
,
A.
,
Roekaerts
,
D.
,
Van Oijen
,
J.
, and
Somers
,
B.
,
2023
, “
Large-Eddy Simulation of Dual-Fuel Spray Ignition at Varying Levels of Methane Diluted Ambient Oxidizer Using FGM
,”
Fuel
,
351
, p.
128901
.
40.
Kahila
,
H.
,
Kaario
,
O.
,
Ahmad
,
Z.
,
Ghaderi Masouleh
,
M.
,
Tekgül
,
B.
,
Larmi
,
M.
, and
Vuorinen
,
V.
,
2019
, “
A Large-Eddy Simulation Study on the Influence of Diesel Pilot Spray Quantity on Methane-Air Flame Initiation
,”
Combust. Flame
,
206
, pp.
506
521
.
41.
Bilger
,
R. W.
,
Stårner
,
S. H.
, and
Kee
,
R. J.
,
1990
, “
On Reduced Mechanisms for Methane Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.
42.
Reaction Design
,
2015
,
CHEMKIN-PRO 15141
,
Reaction Design
,
San Diego, CA
.
43.
Xu
,
C.
,
Pal
,
P.
,
Ren
,
X.
,
Sjöberg
,
M.
,
Van Dam
,
N.
,
Wu
,
Y.
,
Lu
,
T.
,
McNenly
,
M.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042306
.
44.
Kalvakala
,
K.
,
Pal
,
P.
,
Wu
,
Y.
,
Kukkadapu
,
G.
,
Kolodziej
,
C.
,
Gonzalez
,
J. P.
,
Waqas
,
M. U.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Analysis of Fuel Effects on Advanced Compression Ignition Using a Cooperative Fuel Research Engine Computational Fluid Dynamics Model
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102304
.
45.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
,
McNenly
,
M.
,
Lapointe
,
S.
,
Whitesides
,
R.
,
Lu
,
T.
,
Aggarwal
,
S. K.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032305
.
46.
Singh
,
H.
,
Kutkut
,
A.
,
Pal
,
P.
,
Aggarwal
,
S. K.
, and
Li
,
H.
,
2024
, “Numerical Investigation of the Combustion Process and Emissions Formation in a Heavy-Duty Diesel Engine Featured With Multi-Pulse Fuel Injection,” SAE Paper No. 2024-01-4285.
47.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “Structure of High-Pressure Fuel Sprays,” SAE Technical Paper No. 870598.
48.
Reitz
,
R. D.
,
1988
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Spray Technol.
,
3
, pp.
309
337
.
49.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission,” SAE Technical Paper No. 980131.
50.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
51.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” SAE Technical Paper No. 930072.
52.
Jain
,
S. K.
, and
Aggarwal
,
S. K.
,
2018
, “
Compositional Effects on the Ignition and Combustion of Low Octane Fuels Under Diesel Conditions
,”
Fuel
,
220
, pp.
654
670
.
53.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P. K.
,
2014
, “Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement,” SAE Technical Paper 2014-01-1116. .
54.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2014
, CONVERGE (Version 2.2. 0) Manual.
55.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Xue
,
Q.
,
Som
,
S.
,
Banerjee
,
S.
,
Hu
,
B.
,
Liu
,
K.
, and
Deur
,
J. M.
,
2014
, “
Large Eddy Simulation of Vaporizing Sprays Considering Multi-Injection Averaging and Grid-Convergent Mesh Resolution
,”
ASME J. Eng. Gas Turbine Power
,
136
(
11
), p.
111504
.
56.
Hu
,
B.
,
Banerjee
,
S.
,
Liu
,
K.
,
Rajamohan
,
D.
,
Deur
,
J. M.
,
Xue
,
Q.
, et al
,
2015
, “
Large Eddy Simulation of a Turbulent Non-Reacting Spray Jet
,”
Proceedings of Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
,
Houston, TX
,
American Society of Mechanical Engineers
, p. V002T06A007.
57.
Kalvakala
,
K. C.
,
Pal
,
P.
,
Gonzalez
,
J. P.
,
Kolodziej
,
C. P.
,
Seong
,
H. J.
,
Kukkadapu
,
G.
, et al
,
2022
, “
Numerical Analysis of Soot Emissions From Gasoline-Ethanol and Gasoline-Butanol Blends Under Gasoline Compression Ignition Conditions
,”
Fuel
,
319
, p.
123740
.
58.
Xu
,
S.
,
Li
,
G.
,
Zhou
,
M.
,
Yu
,
W.
,
Zhang
,
Z.
,
Hou
,
D.
, and
Yu
,
F.
,
2022
, “
Experimental and Kinetic Studies of Extinction Limits of Counterflow Cool and Hot Diffusion Flames of Ammonia/n-Dodecane
,”
Combust. Flame
,
245
, p.
112316
.
59.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.
60.
Heufer
,
K. A.
, and
Olivier
,
H.
,
2010
, “
Determination of Ignition Delay Times of Different Hydrocarbons in a New High Pressure Shock Tube
,”
Shock Waves
,
20
(
4
), pp.
307
316
.
61.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
62.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1994
, “
Shock-Tube Investigations on the Self-Ignition of Hydrocarbon-Air Mixtures at High Pressures
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1579
1585
.
63.
Lubrano Lavadera
,
M.
,
Han
,
X.
, and
Konnov
,
A. A.
,
2021
, “
Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, n -Heptane, and Iso-Octane
,”
Energy Fuels
,
35
(
9
), pp.
7156
7168
.
64.
Som
,
S.
,
D’Errico
,
G.
,
Longman
,
D.
, and
Lucchini
,
T.
,
2012
, “Comparison and Standardization of Numerical Approaches for the Prediction of Non-Reacting and Reacting Diesel Sprays,” SAE Technical Paper No. 2012-01-1263.
65.
Fu
,
X.
, and
Aggarwal
,
S. K.
,
2015
, “
Fuel Unsaturation Effects on NOx and PAH Formation in Spray Flames
,”
Fuel
,
160
, pp.
1
15
.
66.
Som
,
S.
, and
Aggarwal
,
S. K.
,
2009
, “
Assessment of Atomization Models for Diesel Engine Simulations
,”
Atomization Sprays
,
19
(
9
), pp.
885
903
.
67.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
,
2007
, “Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging,” SAE Technical Paper No. 2007-01-0647.
68.
Lu
,
T.
,
Law
,
C. K.
,
Yoo
,
C. S.
, and
Chen
,
J. H.
,
2009
, “
Dynamic Stiffness Removal for Direct Numerical Simulations
,”
Combust. Flame
,
156
(
8
), pp.
1542
1551
.
69.
Zeuch
,
T.
,
Moréac
,
G.
,
Ahmed
,
S. S.
, and
Mauss
,
F.
,
2008
, “
A Comprehensive Skeletal Mechanism for the Oxidation of n-Heptane Generated by Chemistry-Guided Reduction
,”
Combust. Flame
,
155
(
4
), pp.
651
674
.
70.
Wang
,
H.
,
Jiao
,
Q.
,
Yao
,
M.
,
Yang
,
B.
,
Qiu
,
L.
, and
Reitz
,
R. D.
,
2013
, “
Development of an n-Heptane/Toluene/Polyaromatic Hydrocarbon Mechanism and Its Application for Combustion and Soot Prediction
,”
Int. J. Eng. Res.
,
14
(
5
), pp.
434
451
.
71.
Nordin
,
N.
,
1998
, “Numerical Simulations of Non-Steady Spray Combustion Using a Detailed Chemistry Approach,” Thesis for Licentiate of Engineering,
Chalmers University of Technology
,
Goteborg, Sweden
.
72.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.
73.
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2011
, “
Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
(
1
), p.
338
359
.
74.
Bhattacharjee
,
S.
, and
Haworth
,
D. C.
,
2013
, “
Simulations of Transient n-Heptane and n-Dodecane Spray Flames Under Engine-Relevant Conditions Using a Transported PDF Method
,”
Combust. Flame
,
160
(
10
), pp.
2083
2102
.
75.
Fu
,
X.
, and
Aggarwal
,
S. K.
,
2015
, “
Two-Stage Ignition and NTC Phenomenon in Diesel Engines
,”
Fuel
,
144
, pp.
188
196
.
76.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1-2
), pp.
149
177
.
77.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.
78.
Gong
,
C.
,
Jangi
,
M.
, and
Bai
,
X.-S.
,
2014
, “
Large Eddy Simulation of n-Dodecane Spray Combustion in a High Pressure Combustion Vessel
,”
Appl. Energy
,
136
, pp.
373
381
.
79.
Pei
,
Y.
,
Som
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Large Eddy Simulation of a Reacting Spray Flame With Multiple Realizations Under Compression Ignition Engine Conditions
,”
Combust. Flame
,
162
(
12
), pp.
4442
4455
.
80.
Dahms
,
R. N.
,
Paczko
,
G. A.
,
Skeen
,
S. A.
, and
Pickett
,
L. M.
,
2017
, “
Understanding the Ignition Mechanism of High-Pressure Spray Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2615
2623
.
81.
Pei
,
Y.
,
Hawkes
,
E. R.
,
Bolla
,
M.
,
Kook
,
S.
,
Goldin
,
G. M.
,
Yang
,
Y.
,
Pope
,
S. B.
, and
Som
,
S.
,
2016
, “
An Analysis of the Structure of an n-Dodecane Spray Flame Using TPDF Modelling
,”
Combust. Flame
,
168
, pp.
420
435
.
82.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2016
, “
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032205
.
83.
Tekgül
,
B.
,
Kahila
,
H.
,
Kaario
,
O.
, and
Vuorinen
,
V.
,
2020
, “
Large-Eddy Simulation of Dual-Fuel Spray Ignition at Different Ambient Temperatures
,”
Combust. Flame
,
215
, pp.
51
65
.
84.
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3167
3174
.
85.
Irannejad
,
A.
,
Banaeizadeh
,
A.
, and
Jaberi
,
F.
,
2015
, “
Large Eddy Simulation of Turbulent Spray Combustion
,”
Combust. Flame
,
162
(
2
), pp.
431
450
.
86.
Sato
,
J.
,
Konishi
,
K.
,
Okada
,
H.
, and
Niioka
,
T.
,
1988
, “
Ignition Process of Fuel Spray Injected Into High Pressure High Temperature Atmosphere
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
695
702
.
87.
Edwards
,
C. F.
,
Siebers
,
D. L.
, and
Hoskin
,
D. H.
,
1992
, “A Study of the Autoignition Process of a Diesel Spray via High Speed Visualization,” SAE Technical Paper No. 920108.
88.
Kaario
,
O. T.
,
Karimkashi
,
S.
,
Bhattacharya
,
A.
,
Vuorinen
,
V.
,
Larmi
,
M.
, and
Bai
,
X.-S.
,
2024
, “
A Comparative Study on Methanol and n-Dodecane Spray Flames Using Large-Eddy Simulation
,”
Combust. Flame
,
260
, p.
113277
.
You do not currently have access to this content.