Abstract

To enable stable performance in a rotating detonation combustor (RDC) operating with aviation fuel and air mixtures, this study develops a novel RDC configuration for hydrocarbon/oxidizer systems. The experimental investigation focuses on characterizing both nonreactive flow patterns and high-energy combustion phenomena under diverse supply parameters, employing premixed injection strategies for initial validation. Under premixed gas conditions, a stable detonation wave (RDW) mode was successfully established. The pressure of the RDW is approximately 1.3 MPa, and the wave velocity is close to 2000 m/s. With an increase in the incoming flowrate, specific thrust decreases, while the height of the detonation wave (DW) demonstrates a parabolic rise. Lower equivalence ratios are expected to cause instability in the RDW. Furthermore, higher total inflow temperatures are more likely to initiate the formation of new DW fronts, leading to a multiwavefront operational mode within the RDC.

References

1.
Qiao Feng
,
X. I. E.
,
Bing
,
W.
, and
Kun
,
D.
,
2020
, “
Progress in Research of Rotating Detonation Propulsion
,”
Phys. Gases
,
5
(
1
), pp.
1
23
.
2.
Lu
,
F. K.
, and
Braun
,
E. M.
,
2011
, “
Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts
,”
J. Propul. Power
,
30
(
5
), pp.
1
18
.
3.
Qin
,
Y. X.
,
2022
, “
New Development Progress of Rotating Detonation Engine
,”
Aerosp. Power
,
03
, pp.
16
19
.
4.
Kolahdooz
,
H.
,
Nazari
,
M.
,
Kayhani
,
M.
,
Ebrahimi
,
R.
, and
Askari
,
O.
,
2019
, “
Effect of Obstacle Type on Methane–Air Flame Propagation in a Closed Duct: An Experimental Study
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112208
.
5.
Laich
,
A. R.
,
Baker
,
J.
,
Ninnemann
,
E.
,
Sigler
,
C.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Vasu
,
S. S.
,
2020
, “
Effects of High Fuel Loading and CO2 Dilution on Oxy-Methane Ignition Inside a Shock Tube at High Pressure
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102103
.
6.
Voitsekhovskii
,
B. V.
,
Mitrofanov
,
V. V.
, and
Topchian
,
M. E.
,
1969
, “
Investigation of the Structure of Detonation Waves in Gases
,”
Symp. Combust.
,
12
(
1
), pp.
829
837
.
7.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.
8.
Han
,
X.
,
Huang
,
Y.
,
Zheng
,
Q.
,
Xiao
,
Q.
,
Xu
,
H.
,
Wang
,
F.
,
Wu
,
Y.
,
Feng
,
W.
, and
Weng
,
C.
,
2024
, “
Study of the Characteristics and Combustion Efficiency of Liquid Kerosene/Oxygen-Enriched Air Rotating Detonation Wave With Different Modes
,”
Fuel
,
355
, p.
129424
.
9.
Bykovskii
,
F. A.
,
Vedernikov
,
E. F.
,
Polozov
,
S. V.
, and
Golubev
,
Y. V.
,
2007
, “
Initiation of Detonation in Flows of Fuel-Air Mixtures
,”
Combust. Explos. Shock Waves
,
43
(
3
), pp.
345
354
.
10.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2014
, “
Initiation of Detonation of Fuel-Air Mixtures in a Flow-Type Annular Combustor
,”
Combust. Explos. Shock Waves
,
50
(
2
), pp.
214
222
.
11.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2019
, “
Continuous Detonation of the Liquid Kerosene-Air Mixture With Addition of Hydrogen or Syngas
,”
Combust. Explos. Shock Waves
,
55
(
5
), pp.
589
598
.
12.
Wang
,
F.
,
Weng
,
C.
,
Wu
,
Y.
,
Bai
,
Q.
,
Zheng
,
Q.
, and
Xu
,
H.
,
2020
, “
Numerical Research on Kerosene/Air Rotating Detonation Engines Under Different Injection Total Temperatures
,”
Aerosp. Sci. Technol.
,
103
, p.
105899
.
13.
Wen
,
H.
,
Fan
,
W.
,
Xu
,
S.
, and
Wang
,
B.
,
2023
, “
Numerical Study on Droplet Evaporation and Propagation Stability in Normal-Temperature Two-Phase Rotating Detonation System
,”
Aerosp. Sci. Technol.
,
138
, p.
108324
.
14.
Jin
,
S.
,
Meng
,
Q.
,
Zhao
,
N.
,
Zheng
,
H.
, and
Li
,
Z.
,
2021
, “
Formation and Propagation Characteristics of Hydrogen/Air Nonpremixed Rotating Detonation Wave
,”
J. Harbin Eng. Univ.
,
42
(
3
), pp.
361
367
.
15.
Owoyele
,
O.
, and
Pal
,
P.
,
2020
, “
A Novel Active Optimization Approach for Rapid and Efficient Design Space Exploration Using Ensemble Machine Learning
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032307
.
16.
Pal
,
P.
,
Kumar
,
G.
,
Drennan
,
S. A.
,
Rankin
,
B. A.
, and
Som
,
S.
,
2021
, “
Multidimensional Numerical Modeling of Combustion Dynamics in a Non-Premixed Rotating Detonation Engine With Adaptive Mesh Refinement
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112308
.
17.
Pal
,
P.
,
Demir
,
S.
, and
Som
,
S.
,
2023
, “
Numerical Analysis of Combustion Dynamics in a Full-Scale Rotating Detonation Rocket Engine Using Large Eddy Simulations
,”
ASME. J. Energy Resour. Technol.
,
145
(
2
), p.
021702
.
18.
Dunn
,
I.
,
Flores
,
W.
,
Morales
,
A.
,
Malik
,
V.
, and
Ahmed
,
K.
,
2022
, “
Carbon-Based Multi-Phase Rotating Detonation Engine
,”
ASME. J. Energy Resour. Technol.
,
144
(
4
), p.
042101
.
19.
Zhdan
,
S. A.
,
Bykovskii
,
F. A.
, and
Vedernikov
,
E. F.
,
2007
, “
Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen-Oxygen Mixture
,”
Combust. Explos. Shock Waves
,
43
(
4
), pp.
449
459
.
20.
Davidenko
,
D. M.
,
Eude
,
Y.
, and
Gökalp
,
I.
,
2011
, “
Theoretical and Numerical Studies on Continuous Deto⁃Nation Wave Engines
,”
17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
,
San Francisco, CA
,
Apr. 11–14
, pp.
2011
2334
.
21.
Fujii
,
J.
,
Kumazawa
,
Y.
,
Matsuo
,
A.
,
Nakagami
,
S.
,
Matsuoka
,
K.
, and
Kasahara
,
J.
,
2017
, “
Numerical Investigation on Detonation Velocity in Rotating Detonation Engine Chamber
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2665
2672
.
22.
Feng
,
W.
,
Zheng
,
Q.
,
Wang
,
X.
,
Dong
,
X.
,
Weng
,
C.
,
Xiao
,
Q.
, and
Meng
,
H.
,
2022
, “
Effect of Equivalent Ratio on Two-Phase Rotating Detonation Wave of Kerosene-Air
,”
Acta Armamentarii
,
43
(
6
), pp.
1304
1315
.
23.
Ma
,
Y.
,
Zhou
,
S.
,
Ma
,
H.
,
Ge
,
G.
,
Yu
,
D.
,
Zou
,
G.
,
Liang
,
Z.
, and
Zhang
,
T.
, et al
,
2022
, “
Experimental Investigation on Propagation Characteristics of Liquid-Fuel/Preheated-Air Rotating Detonation Wave
,”
Int. J. Hydrogen Energy
,
47
(
57
), pp.
24080
24092
.
24.
Li
,
J. M.
,
Chang
,
P. H.
,
Li
,
L.
,
Yang
,
Y.
,
Teo
,
C.J.
and
Khoo
,
B.C.
,
2018
, “
Investigation of Injection Strategy for Liquid-Fuel Rotating Detonation Engine
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
,
American Institute of Aeronautics and Astronautics
, pp.
3830
3843
.
25.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
1
), pp.
1
57
.
26.
Li
,
X.
,
Jin
,
W.
,
Li
,
J.
,
Yao
,
Q.
,
Qin
,
Q.
, and
Yuan
,
L.
,
2024
, “
Effects of the Outlet Contraction Ratio on the Performance of Liquid Kerosene/Air Two-Phase Rotating Detonation Combustors
,”
Acta Astronaut.
,
222
, pp.
296
313
.
27.
Wang
,
Y.
,
2016
, “
Rotating Detonation in a Combustor of Trapezoidal Cross Section for the Hydrogen-Air Mixture
,”
Int. J. Hydrog. Energy
,
41
(
12
), pp.
5605
5616
.
28.
Li
,
B.
, and
Weng
,
C.
,
2015
, “
Two-Dimensional Numerical Study of Gas-Liquid Two-Phase Detonation Wave Propagation Characteristics in Continuous Rotating Detonation Engines
,”
J. Solid Rocket Technol.
,
38
(
05
), pp.
646
652
.
29.
Wang
,
G.
,
Zhang
,
D.
,
Liu
,
K.
, and
Wang
,
J.
,
2010
, “
An Improve CE/SE Scheme for Numerical Simulation of Gaseous and Two-Phase Detonations
,”
Comput. Fluids
,
39
(
1
), pp.
168
177
.
You do not currently have access to this content.