Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The growing interest in alternative fuels stems from the need to address energy security and economic challenges. Hydrogen fuel is considered a promising solution due to its versatility, efficiency, and potential for zero emissions, as well as continuous technological advancements and increasing policy support. This study intends to enhance Chlorophyta growth by incorporating different volume percentages of cerium oxide (CeO2) as feedstock for hydrogen production through hydrothermal gasification. The research findings indicate that the highest concentration (0.2 vol%) of CeO2 resulted in the maximum growth of 0.63 µ/day, which was utilized for hydrogen extraction. Additionally, the investigation explored the impact of Chlorophyta algae loading (0.05–0.15 g/mL) and processing temperature (500–650 °C) on molar fraction, hydrogen yield, gasification efficiency, carbon efficiency, and total hydrogen production. Higher feedstock (0.15 g/mL) and gasification temperature (650 °C) were found to improve hydrogen fraction (61.8%), yield (10.2 mol/kg), gasification efficiency (43.8%), and total hydrogen production (62.5%).

References

1.
Rathi
,
B. S.
,
Kumar
,
P. S.
,
Rangasamy
,
G.
, and
Rajendran
,
S.
,
2024
, “
A Critical Review on Biohydrogen Generation From Biomass
,”
Int. J. Hydrogen Energy
,
52
, pp.
115
138
.
2.
Kajol
,
G.
,
Singh
,
H. M.
,
Singh
,
A.
,
Kothari
,
R.
, and
Tyagi
,
V. V.
,
2024
, “
Insights Into Biohydrogen Production From Algal Biomass: Challenges, Recent Advancements and Future Directions
,”
Int. J. Hydrogen Energy
,
52
, pp.
127
151
.
3.
Surajudeen
,
S.
,
Oladosu
,
T. L.
,
Amosa
,
T. I.
,
Oluwadamilola Olutoki
,
J.
,
Ansari
,
M. N. M.
,
Abioye
,
K. J.
,
Rehman
,
Z. U.
, and
Soleimani
,
H.
,
2024
, “
Hydrogen-Powered Horizons: Transformative Technologies in Clean Energy Generation, Distribution, and Storage for Sustainable Innovation
,”
Int. J. Hydrogen Energy
,
56
, pp.
1152
1182
.
4.
Raheem
,
A.
,
Ji
,
G.
,
Memon
,
A.
,
Sivasangar
,
S.
,
Wang
,
W.
,
Zhao
,
M.
,
Hin
,
Y.
, and
Yap
,
T.
,
2018
, “
Catalytic Gasification of Algal Biomass for Hydrogen-Rich Gas Production: Parametric Optimization Via Central Composite Design
,”
Energy Convers. Manage.
,
158
, pp.
235
245
.
5.
Maswanna
,
T.
,
Lindblad
,
P.
, and
Maneeruttanarungroj
,
C.
,
2020
, “
Improved Biohydrogen Production by Immobilized Cells of the Green Alga Tetraspora sp. CU2551 Incubated Under Aerobic Condition
,”
J. Appl. Phycol.
,
32
, pp.
2937
2945
.
6.
Maswanna
,
T.
,
Phunpruch
,
S.
,
Lindblad
,
P.
, and
Maneeruttanarungroj
,
C.
,
2018
, “
Enhanced Hydrogen Production by Optimization of Immobilized Cells of the Green Alga Tetraspora sp. CU2551 Grown Under Anaerobic Condition
,”
Biomass Bioenergy
,
111
, pp.
88
95
.
7.
Rahmani
,
A.
,
Zerrouki
,
D.
,
Djafer
,
L.
, and
Ayral
,
A.
,
2017
, “
Hydrogen Recovery From the Photovoltaic Electroflocculation-Flotation Process for Harvesting Chlorella Pyrenoidosa Microalgae
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
19591
19596
.
8.
Alalayah
,
W. M.
,
Al-Zahrani
,
A.
,
Edris
,
G.
, and
Demirbas
,
A.
,
2017
, “
Kinetics of Biological Hydrogen Production From Green Microalgae Chlorella Vulgaris Using Glucose as Initial Substrate
,”
Energy Sources Part A
,
39
(
12
), pp.
1210
1215
.
9.
Yagi
,
T.
,
Yamashita
,
K.
, and
Okada
,
N.
,
2017
, “
Hydrogen Photoproduction in Green Algae Chlamydomonas reinhardtii Sustainable Over 2 Weeks With the Original Cell Culture Without a Supply of Fresh Cells Nor Exchange of the Whole Culture Medium
,”
J. Plant Res.
,
129
, pp.
771
779
.
10.
Zhang
,
L.
,
Jia
,
C.
,
Bai
,
F.
,
Wang
,
W.
,
An
,
S.
,
Zhao
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sun
,
H.
,
2024
, “
A Comprehensive Review of the Promising Clean Energy Carrier: Hydrogen Production, Transportation, Storage, and Utilization (HPTSU) Technologies
,”
Fuel
,
355
, p.
129455
.
11.
Chang
,
Y. N.
,
Zhang
,
M.
,
Xia
,
L.
,
Zhang
,
J.
, and
Xing
,
G.
,
2012
, “
The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles
,”
Materials (Basel)
,
5
(
12
), pp.
2850
2871
.
12.
Zaka
,
M.
,
Abbasi
,
B. H.
,
Rahman
,
L. U.
,
Shah
,
A.
, and
Zia
,
M.
,
2016
, “
Synthesis and Characterization of Metal Nanoparticles and Their Effects on Seed Germination and Seedling Growth in Commercially Important Eruca sativa
,”
IET Nanobiotechnol.
,
10
(
3
), pp.
134
140
.
13.
Miazek
,
K.
,
Iwanek
,
W.
,
Remacle
,
C.
,
Richel
,
A.
, and
Goffin
,
D.
,
2015
, “
Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review
,”
Int. J. Mol. Sci.
,
16
(
10
), pp.
23929
23969
.
14.
Jayaraman
,
K.
, and
Gökalp
,
I.
,
2015
, “
Pyrolysis, Combustion and Gasification Characteristics of Miscanthus and Sewage Sludge
,”
Energy Convers. Manage.
,
89
, pp.
83
91
.
15.
Peterson
,
A. A.
,
Vogel
,
F.
,
Lachance
,
R. P.
,
Fröling
,
M.
,
Antal
,
M. J.
, and
Tester
,
J. W.
Jr
,
2008
, “
Thermochemical Biofuel Production in Hydrothermal Media: A Review of Sub and Supercritical Water Technologies
,”
Energy Environ. Sci.
,
1
, pp.
32
65
.
16.
Matsumura
,
Y.
,
2002
, “
Evaluation of Supercritical Water Gasification and Biomethanation for Wet Biomass Utilization in Japan
,”
Energy Convers. Manage.
,
43
(
9
), pp.
9
12
.
17.
Ro
,
K. S.
,
Cantrell
,
K.
,
Elliott
,
D.
, and
Hunt
,
P. G.
,
2007
, “
Catalytic Wet Gasification of Municipal and Animal Wastes
,”
Ind. Eng. Chem. Res. J.
,
46
, pp.
8839
8845
.
18.
Wang
,
Y.
,
Zhu
,
Y.
,
Liu
,
Z.
,
Su
,
J.
,
Fang
,
C.
, and
Xu
,
D.
,
2019
, “
Influences of Operating Parameters on Liquefaction Performances of TetraPak in Sub-/Supercritical Water
,”
J. Environ. Manage.
,
237
, pp.
545
551
.
19.
Hantoko
,
D.
,
Su
,
H.
,
Yan
,
M.
,
Kanchanatip
,
E.
,
Susanto
,
H.
, and
Wang
,
G.
,
2018
, “
Thermodynamic Study on the Integrated Supercritical Water Gasification With Reforming Process for Hydrogen Production: Effects of Operating Parameters
,”
Int. J. Hydrogen Energy
,
43
, pp.
7620
7632
.
20.
Bai
,
B.
,
Liu
,
Y.
,
Wang
,
Q.
,
Zou
,
J.
,
Zhang
,
H.
, and
Jin
,
H.
,
2019
, “
Experimental Investigation on Gasification Characteristics of Plastic Wastes in Supercritical Water
,”
Renew. Energy
,
135
, pp.
32
40
.
21.
Hantoko
,
D.
,
Kanchanatip
,
E.
,
Yan
,
M.
,
Weng
,
Z.
,
Gao
,
Z.
, and
Zhong
,
Y.
,
2019
, “
Assessment of Sewage Sludge Gasification in Supercritical Water for H2-Rich Syngas Production
,”
Process Saf. Environ. Prot.
,
131
, pp.
63
72
.
22.
Ishaq
,
H.
, and
Dincer
,
H.
,
2022
, “
An Efficient Energy Utilization of Biomass Energy-Based System for Renewable Hydrogen Production and Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011701
.
23.
Sunyoto
,
N. M. S.
,
Zhu
,
M.
,
Zhang
,
Z.
, and
Zhand
,
D.
,
2018
, “
Effect of Biochar Addition and Temperature on Hydrogen Production From the First Phase of Two-Phase Anaerobic Digestion of Carbohydrates Food Waste
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p.
062204
.
24.
Jin
,
H.
,
Chen
,
B.
,
Zhao
,
X.
, and
Cao
,
C.
,
2018
, “
Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041801
.
25.
Al-Raqom
,
F.
, and
Klausner
,
F.
,
2014
, “
Reactivity of Iron/Zirconia Powder in Fluidized Bed Thermochemical Hydrogen Production Reactors
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012201
.
26.
Lubis
,
L. L.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
, “
Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermochemical Water Splitting
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021004
.
27.
Dawood
,
F.
,
Anda
,
M.
, and
Shafiullah
,
G. M.
,
2020
, “
Hydrogen Production for Energy: An Overview
,”
Int. J. Hydrogen Energy
,
45
(
7
), pp.
3847
3869
.
28.
Aydin
,
M. I.
,
Karaca
,
A. E.
,
Qureshy
,
A. M. M. I.
, and
Dincer
,
I.
,
2021
, “
A Comparative Review on Clean Hydrogen Production From Wastewaters
,”
J. Environ. Manage.
,
279
, p.
111793
.
29.
Rasul
,
M. G.
,
Hazrat
,
M. A.
,
Sattar
,
M. A.
, and
Shearer
,
M. J.
,
2022
, “
The Future of Hydrogen: Challenges on Production, Storage and Applications
,”
Energy Convers. Manage.
,
272
, p.
116326
.
30.
Sathish
,
T.
,
Sabarirajan
,
N.
,
Christydass
,
S. P. J.
,
Sivanathan
,
S.
, and
Vijayan
,
V.
,
2022
, “
Synthesis and Optimization of Deesterified Acacia-Alginate Nanohydrogel for Amethopterin Delivery
,”
Bioinorg. Chem. Appl.
,
2022
(
1
), p.
7192919
.
31.
Karthikeyan
,
N.
,
Prabagaran
,
S.
,
Selvam
,
L.
, and
Kalam
,
M. A.
,
2024
, “
Blending Action of Pyrolysis Oil/Diesel Fuel Featured With Hydrogen on Compression Ignition Engine Performance and Emission Analysis
,”
Pet. Sci. Technol.
,
23
(
4
), pp.
1
16
.
32.
Ding
,
N.
,
Azargohar
,
R.
,
Dalai
,
A. K.
, and
Kozinski
,
J. A.
,
2014
, “
Catalytic Gasification of Cellulose and Pinewood to H2 in Supercritical Water
,”
Fuel
,
118
, pp.
416
425
.
33.
Manzoore
,
E. M. S.
,
Upadhyay
,
V. V.
,
Bhooshanam
,
N. N.
, and
Singh
,
R. P.
,
2024
, “
Organic Municipal Solid Waste Derived Hydrogen Production Through Supercritical Water Gasification Process Configured With K2CO3/SiO2: Performance Study
,”
Biomass Bioenergy
,
190
, p.
107379
.
34.
Shen
,
X.
,
Du
,
C.
,
Jiang
,
S.
,
Zhang
,
P.
, and
Chen
,
L.
,
2024
, “
Multivariate Uncertainty Analysis of Fracture Problems Through Model Order Reduction Accelerated SBFEM
,”
Appl. Math. Model.
,
125
, pp.
218
240
.
35.
Ramalingam
,
K.
,
Vellaiyan
,
S.
,
Kandasamy
,
M.
,
Chandran
,
D.
, and
Raviadaran
,
R.
,
2024
, “
An Experimental Study and ANN Analysis of Utilizing Ammonia as a Hydrogen Carrier by Real-Time Emulsion Fuel Injection to Promote Cleaner Combustion
,”
Results Eng.
,
21
, p.
101946
. 0.1016/j.rineng.2024.101946
36.
Vinayagam
,
M.
,
Grace
,
L. K. J.
,
Ranjit
,
P. S.
,
Parikh
,
S.
,
Soudagar
,
M. E. M.
,
Obaid
,
S. A.
, and
Alharbi
,
S. A.
,
2024
, “
Synergistic Development of Nonvascular Species Microalgae for Bio-hydrogen Production Featured With Nano Titanium Dioxide Additive
,”
Process Saf. Environ. Prot.
,
5
(
2
), p. 23
37.
Chen
,
L.
,
Lian
,
H.
, and
Huo
,
R.
, “
Uncertainty Analysis in Acoustics: Perturbation Methods and Isogeometric Boundary Element Methods
,”
Eng. Comput.
,
8
(
3
), p. 1276.
38.
Kleinübing
,
S. J.
,
Vieira
,
R. S.
,
Beppu
,
M. M.
,
Gurgel
,
M.
, and
Silva
,
C.
,
2010
, “
Characterization and Evaluation of Copper and Nickel Biosorption on Acidic Algae Sargassum Filipendula
,”
Mater. Res.
,
13
, pp.
541
550
.
39.
Jayabal
,
R.
,
2024
, “
Effect of Hydrogen/Sapota Seed Biodiesel as an Alternative Fuel in a Diesel Engine Using Dual-Fuel Mode
,”
Process Saf. Environ. Prot.
,
183
, pp.
890
900
.
You do not currently have access to this content.