Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Reservoir permeability and stress heterogeneous distribution lead to different hydraulic fracture lengths and angles. Gas reservoirs' heterogeneous characteristics lead that well is not the center of the circle high-permeability regions after large-scale fracturing. Traditional pressure transient model cannot be used in this case. When a horizontal well length is relatively small, radial composite model can be used to simulate wellbore pressure. Therefore, the aim of this paper is to present a semi-analytical mathematical model of the off-center fractured horizontal well with a circle high-permeability region. The coupling approach of hydraulic fracture and matrix model is employed to solve mathematical model. The wellbore pressure transient solution can be obtained by the Laplace transform, Gauss elimination and the Stehfest numerical inversion. The results show that the wellbore pressure response curve of this model includes eleven flow regimes. When the well is not the center of the reservoir, an obvious derivative curve “upwards” will emerge after the inner radial flow regime, which is different from the previous fractured horizontal well model. Hydraulic fracture properties and geometries distribution have obvious influence on derivative curves characteristic of the early regime. Off-center distance and reservoir properties have distinct influences on derivative curves characteristic of the middle regime. This semi-analytical mathematical model can provide a guide on high-permeability region depiction, hydraulic fracture, and reservoir parameter inversion.

References

1.
Khurshid
,
I.
,
Addad
,
Y.
, and
Afgan
,
I.
,
2024
, “
Characterization of Surfactant Adsorption Profile in Carbonates Under Severe Reservoir Conditions With Geochemical Modeling Approach
,”
ASME J. Energy Resour. Technol.
,
146
(
6
), p.
063001
.
2.
Zhang
,
L.-H.
,
Shan
,
B.-C.
,
Zhao
,
Y.-L.
, and
Guo
,
Z.-L.
,
2019
, “
Review of Micro Seepage Mechanisms in Shale Gas Reservoirs
,”
Int. J. Heat Mass Transfer
,
139
, pp.
144
179
.
3.
Zhang
,
T.
,
Wang
,
B.-R.
,
Zhao
,
Y.-L.
,
Zhang
,
L.-H.
,
Qiao
,
X.-Y.
,
Zhang
,
L.
,
Guo
,
J.-J.
, and
Thanh
,
H. V.
,
2024
, “
Inter-Layer Interference for Multi-Layered Tight Gas Reservoir in the Absence and Presence of Movable Water
,”
Pet. Sci.
,
21
(
3
), pp.
1751
1764
.
4.
Zhang
,
Y.
,
Kleit
,
A.
,
Morgan
,
E.
, and
Wang
,
J.
,
2024
, “
Analysis of Ultimate Gas Recovery in Shale Reservoirs
,”
ASME J. Energy Resour. Technol.
,
146
(
8
), p.
083001
.
5.
Heider
,
Y.
,
2021
, “
A Review on Phase-Field Modeling of Hydraulic Fracturing
,”
Eng. Fract. Mech.
,
253
, p.
107881
.
6.
Dindoruk
,
B.
, and
Zhang
,
F.
,
2024
, “
Advances in Drilling and Completion Fluid Technologies for Protecting Oil and Gas Reservoirs: Research Progress and Development Trends
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
050801
.
7.
Zeng
,
J.
,
Wang
,
X.-Z.
,
Guo
,
J.-C.
, and
Zeng
,
F.-H.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
527
548
.
8.
Jiang
,
R.-Z.
,
Zhang
,
F.-L.
,
Cui
,
Y.-Z.
,
Qiao
,
X.
, and
Zhang
,
C.-G.
,
2019
, “
Production Performance Analysis of Fractured Vertical Wells with SRV in Triple Media Gas Reservoirs Using Elliptical Flow
,”
J. Nat. Gas Sci. Eng.
,
68
, p.
102925
.
9.
Zhao
,
Y.-L.
,
Zhang
,
L.-H.
,
Luo
,
J.-X.
, and
Zhang
,
B.-N.
,
2014
, “
Performance of Fractured Horizontal Well With Stimulated Reservoir Volume in Unconventional gas Reservoir
,”
J. Hydrol.
,
512
, pp.
447
456
.
10.
Wang
,
H.
,
Ran
,
Q.-Q.
, and
Liao
,
X.-W.
,
2017
, “
Pressure Transient Responses Study on the Hydraulic Volume Fracturing Vertical Well in Stress-Sensitive Tight Hydrocarbon Reservoirs
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18343
18349
.
11.
Guo
,
J.-J.
,
Wang
,
H.-T.
, and
Zhang
,
L.-H.
,
2016
, “
Transient Pressure and Production Dynamics of Multi-Stage Fractured Horizontal Wells in Shale gas Reservoirs With Stimulated Reservoir Volume
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
425
443
.
12.
Dheyauldeen
,
A.
,
Alkhafaji
,
H.
,
Alfarge
,
D.
,
Al-Fatlawi
,
O.
, and
Hossain
,
M.
,
2022
, “
Performance Evaluation of Analytical Methods in Linear Flow Data for Hydraulically-Fractured Gas Wells
,”
J. Pet. Sci. Eng.
,
208
, p.
109467
.
13.
Bello
,
R. O.
, and
Wattenbarger
,
R. A.
,
2010
, “
Multi-Stage Hydraulically Fractured Shale Gas Rate Transient Analysis
,”
Proceedings of the North Africa Technical Conference and Exhibition
,
Cairo, Egypt
,
February
.
14.
Ozkan
,
E.
,
Brown
,
M.
,
Raghavan
,
R.
, and
Kazemi
,
H.
,
2011
, “
Comparison of Fractured-Horizontal-Well Performance in Tight Sand and Shale Reservoirs
,”
SPE Reserv. Eval. Eng.
,
14
(
02
), pp.
248
259
.
15.
Stalgorova
,
K.
, and
Mattar
,
L.
,
2013
, “
Analytical Model for Unconventional Multifractured Composite Systems
,”
SPE Reserv. Eval. Eng.
,
16
(
03
), pp.
246
256
.
16.
Ezulike
,
O. D.
, and
Dehghanpour
,
H.
,
2014
, “
Modelling Flowback as a Transient Two-Phase Depletion Process
,”
J. Nat. Gas Sci. Eng.
,
19
, pp.
258
278
.
17.
Wei
,
C.
,
Tan
,
Z.
,
Huang
,
G.
,
Cheng
,
X.
,
Zeng
,
Y.
,
Luo
,
H.
,
Li
,
Y.
, and
Li
,
H.
,
2024
, “
Generalized Analytical Well-Test Solutions for Vertically Fractured Wells in Commingled Reservoirs
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
053501
.
18.
Wu
,
Z.
,
Cui
,
C.
,
Lv
,
G.
,
Bing
,
S.
, and
Cao
,
G.
,
2019
, “
A Multi-Linear Transient Pressure Model for Multistage Fractured Horizontal Well in Tight Oil Reservoirs With Considering Threshold Pressure Gradient and Stress Sensitivity
,”
J. Pet. Sci. Eng.
,
172
, pp.
839
854
.
19.
Ezulike
,
D.-O.
, and
Dehghanpour
,
H.
,
2014
, “
A Model for Simultaneous Matrix Depletion Into Natural and Hydraulic Fracture Networks
,”
J. Nat. Gas Sci. Eng.
,
16
, pp.
57
69
.
20.
Tian
,
L.
,
Xiao
,
C.
,
Liu
,
M.-J.
,
Gu
,
D.-H.
,
Song
,
G.-Y.
,
Cao
,
H.-L.
, and
Li
,
X.-L.
,
2014
, “
Well Testing Model for Multi-Fractured Horizontal Well for Shale Gas Reservoirs With Consideration of Dual Diffusion in Matrix
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
283
295
.
21.
Deng
,
Q.
,
Nie
,
R.-S.
,
Jia
,
Y.-L.
,
Huang
,
X.-Y.
,
Li
,
J.-M.
, and
Li
,
H.-K.
,
2015
, “
A New Analytical Model for Non-Uniformly Distributed Multi-Fractured System in Shale Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
719
737
.
22.
Yao
,
S.
,
Wang
,
X.
,
Yuan
,
Q.
,
Guo
,
Z.
, and
Zeng
,
F.
,
2020
, “
Production Analysis of Multifractured Horizontal Wells With Composite Models: Influence of Complex Heterogeneity
,”
J. Hydrol.
,
583
, p.
124542
.
23.
Muskat
,
M.
, and
Milan
,
W. M.
,
1937
, “
The Flow of Heterogeneous Fluids Through Porous Media
,”
J. Appl. Phys.
,
7
(
9
), pp.
346
363
. doi.org/10.1063/1.1745403
24.
Kuchuk
,
F. J.
, and
Kirwan
,
P. A.
,
1987
, “
New Skin and Wellbore Storage Type Curves for Partially Penetrated Wells
,”
SPE Form Eval.
,
2
(
04
), pp.
546
554
.
25.
Riley
,
M. F.
,
Brigham
,
W. E.
, and
Horne
,
R. N.
,
1991
, “
Analytic Solutions for Elliptical Finite-Conductivity Fractures
,”
Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers
,
Dallas, TX
,
October
, p.
14
.
26.
Xing
,
C.
,
Yin
,
H.
,
Yuan
,
H.
,
Fu
,
J.
, and
Xu
,
G.
,
2022
, “
Pressure Transient Analysis for Fracture-Cavity Carbonate Reservoirs With Large-Scale Fractures–Caves in Series Connection
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
052901
.
27.
Zhang
,
Q.
,
Su
,
Y.
,
Wang
,
W.
,
Lu
,
M.
, and
Ren
,
L.
,
2017
, “
Performance Analysis of Fractured Wells With Elliptical SRV in Shale Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
380
390
.
28.
Xu
,
J.-C.
,
Guo
,
C.-H.
,
Teng
,
W.-C.
,
Wei
,
M.-Z.
, and
Jiang
,
R.-Z.
,
2015
, “
Production Performance Analysis of Tight Oil/Gas Reservoirs Considering Stimulated Reservoir Volume Using Elliptical Flow
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
827
839
.
29.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems: Part 1-Analytical Considerations (Includes Associated Papers 28666 and 29213)
,”
SPE Form Eval.
,
6
(
3
), pp.
359
368
.
30.
Chen
,
C.-C.
, and
Raghavan
,
R.
,
1995
, “
Modeling a Fractured Well in a Composite Reservoir
,”
SPE Form Eval.
,
10
(
04
), pp.
241
246
.
31.
Zhao
,
Y.-L.
,
Zhang
,
L.-H.
,
Liu
,
Y.-H.
,
Hu
,
S.-Y.
, and
Liu
,
Q.-G.
,
2015
, “
Transient Pressure Analysis of Fractured Well in Bi-Zonal Gas Reservoirs
,”
J. Hydrol.
,
524
, pp.
89
99
.
32.
Zhang
,
L.-H.
,
Kou
,
Z.-H.
,
Wang
,
H.-T.
,
Zhao
,
Y.-L.
,
Dejam
,
M.
,
Guo
,
J.-J.
, and
Du
,
J.
,
2018
, “
Performance Analysis for a Model of a Multi-Wing Hydraulically Fractured Vertical Well in a Coalbed Methane Gas Reservoir
,”
J. Pet. Sci. Eng.
,
166
, pp.
104
120
.
33.
Rosa
,
A. J.
,
Magalhaes
,
A. A. C.
, and
Horne
,
R. N.
,
1996
, “
Pressure Transient Behavior in Reservoirs With an Internal Circular Discontinuity
,”
SPE J.
,
1
(
01
), pp.
83
92
.
34.
Yang
,
S.
,
Li
,
X.
,
Liu
,
Q.
, and
Xu
,
Y.
,
2023
, “
A Semi-Analytical Model of an Off-Center Multi-Wing Fractured Well in a Low-Permeability Gas Reservoir
,”
SPE Prod. Oper.
,
38
(
02
), pp.
317
331
.
35.
Deng
,
Q.
,
Nie
,
R.-S.
,
Jia
,
Y.-L.
,
Guo
,
Q.
,
Jiang
,
K.-J.
,
Chen
,
X.
,
Liu
,
B.-H.
, and
Dong
,
X.-F.
,
2017
, “
Pressure Transient Behavior of a Fractured Well in Multi-Region Composite Reservoirs
,”
J. Pet. Sci. Eng.
,
158
, pp.
535
553
.
36.
Xu
,
Y.
,
Zuping
,
X.
, and
Yu
,
M.
,
2023
, “
Modeling Transient Flow Behavior of Off-Center Fractured Well With Multiple Fractures in Radial Composite Gas Reservoirs
,”
SPE Reservoir Eval. Eng.
,
26
(
04
), pp.
1127
1143
.
37.
Zhao
,
Y.-L.
,
Li
,
H.
,
Zhang
,
L.-H.
, and
Kang
,
B.
,
2017
, “
Pressure Transient Analysis for Off-Centered Fractured Vertical Wells in Arbitrarily Shaped Gas Reservoirs With the BEM
,”
J. Pet. Sci. Eng.
,
156
, pp.
167
180
.
38.
Shi
,
W.
,
Liu
,
X.
,
Gao
,
M.
,
Tao
,
L.
,
Bai
,
J.
, and
Zhu
,
Q.
,
2023
, “
Pressuredrop Response Characteristics for Multi-Injection Well Interfered Vertical Well in Heterogeneous Fractured Anticline Reservoirs
,”
ASME J. Energy Resour. Technol.
,
145
(
9
), p.
092902
.
39.
Nie
,
R.-S.
,
Li
,
J.-S.
,
Deng
,
Q.
,
Chen
,
Z.-X.
,
Xie
,
F.
,
Qu
,
J.-H.
,
Zhan
,
J.
,
Cao
,
X.-P.
,
Lu
,
C.
, and
Yi
,
P.
,
2022
, “
Modeling Transient Flow Behavior of Eccentric Horizontal Well in Bi-Zonal Formation
,”
J. Pet. Sci. Eng.
,
208
, p.
109261
.
40.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1994
, “
New Solutions for Well-Test-Analysis Problems: Part III—Aaaitionai Algorithms
,”
Proceedings of the SPE Annual Technical Conference and Exhibition?
,
New Orleans, LA
,
September
.
41.
Chen
,
Z.-M.
,
Liao
,
X.-W.
,
Sepehrnoori
,
K.
, and
Yu
,
W.
,
2018
, “
A Semianalytical Model for Pressure-Transient Analysis of Fractured Wells in Unconventional Plays With Arbitrarily Distributed Discrete Fractures
,”
SPE J.
,
23
(
06
), pp.
2041
2059
.
42.
Abraham
,
S.
,
1983
,
Pressure Transient Analysis of Reservoirs with Linear or Internal Circular Boundaries
,
Stanford University
,
Stanford, CA
.
43.
Chen
,
Z.-M.
,
Liao
,
X.-W.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2019
, “
Pressure-Transient Behaviors of Wells in Fractured Reservoirs With Natural- and Hydraulic-Fracture Networks
,”
SPE J.
,
24
(
01
), pp.
375
394
.
44.
Zhou
,
W.-T.
,
Banerjee
,
R.
,
Poe
,
B. D.
,
Spath
,
J.
, and
Thambynayagam
,
M.
,
2013
, “
Semi-Analytical Production Simulation of Complex Hydraulic Fracture Network
,”
SPE J.
,
19
(
1
), pp.
6
18
.
45.
Luo
,
W.-J.
,
Tang
,
C.-F.
, and
Zhou
,
Y.-F.
,
2019
, “
A New Fracture-Unit Model and Its Application to a Z-Fold Fracture
,”
SPE J.
,
24
(
01
), pp.
319
333
.
46.
Xu
,
Y.-J.
,
Liu
,
Q.-G.
,
Li
,
X.-P.
,
Meng
,
Z.
,
Yang
,
S.-H.
, and
Tan
,
X.-H.
,
2021
, “
Pressure Transient and Blasingame Production Decline Analysis of Hydraulic Fractured Well With Induced Fractures in Composite Shale Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
94
, p.
104058
.
47.
Wang
,
L.
, and
Wang
,
X. D.
,
2014
, “
Type Curves Analysis for Asymmetrically Fractured Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023101
.
48.
Zhang
,
Q.
,
Wang
,
D.
,
Zeng
,
F.
,
Guo
,
Z.
, and
Wei
,
N.
,
2019
, “
Pressure Transient Behaviors of Vertical Fractured Wells With Asymmetric Fracture Patterns
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
043001
.
49.
Van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Pet. Technol.
,
1
(
12
), pp.
305
324
.
50.
Cinco
,
L. H.
,
Samaniego
,
V. F.
, and
Dominguez
,
A. N.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
SPE J.
,
18
(
04
), pp.
253
264
, SPE-98-PA.
51.
Chen
,
Z.-M.
,
Liao
,
X.-E.
,
Zhao
,
X.-L.
,
Dou
,
X.-J.
, and
Zhu
,
L.-T.
,
2016
, “
A Semi-Analytical Mathematical Model for Transient Pressure Behavior of Multiple Fractured Vertical Well in Coal Reservoirs Incorporating With Diffusion, Adsorption, and Stress-Sensitivity
,”
J. Nat. Gas Sci. Eng.
,
29
, pp.
570
582
.
You do not currently have access to this content.