Abstract

With the characteristics of large drainage area and low drilling cost, the herringbone wells are becoming a significant way to boost the well production, improve the dynamic flow profile, delay the coning of bottom water, and enhance the development effect. Due to the complex flow characteristics of herringbone wells, result in a disparity between expected and actual production, therefore, it is crucial to investigate the productivity and flow characteristics of herringbone wells. In this paper, taking into account the interference between branch wellbores and perforations, the herringbone wells productivity model in bottom-water reservoirs is derived, the flow characteristics and the productivity sensitivity factors are analyzed. The results indicate that the transient flow time in reservoir is brief and that pressure changes increase with proximity to the wellbore, the productivity declines as the production time increases and subsequently tends to a certain value, reaching a quasi-steady-state. The per unit length radial inflow of wellbore decreases as the branch length, branch angle, and the number of branches increase, however, the rate of decrease slows down when exceeding three branches. The phase angle has a larger effect on production in high anisotropy reservoirs, and the production is the highest at 180 deg phase angle. When the perforation density rises above 16 shots/m, the production increasing trend slows down. This study provides significant guidance for practical application in the oil fields, including optimizing the shape of herringbone wells, allocating production in a rational manner, defining appropriate work systems, and improving oil recovery in bottom-water reservoirs.

References

1.
Jin
,
G.
,
Su
,
Z.
,
Zhai
,
H.
,
Feng
,
C.
,
Liu
,
J.
,
Peng
,
Y.
, and
Liu
,
L.
,
2023
, “
Enhancement of Gas Production From Hydrate Reservoir Using a Novel Deployment of Multilateral Horizontal Well
,”
Energy
,
270
(
6
), p.
126867
.
2.
Jiang
,
R.
,
Liu
,
X.
,
Cui
,
Y.
,
Wang
,
X.
,
Gao
,
Y.
,
Mao
,
N.
, and
Yan
,
X.
,
2020
, “
Production Performance Analysis for Multi-branched Horizontal Wells in Composite Coal Bed Methane Reservoir Considering Stress Sensitivity
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
073001
.
3.
Zhang
,
W.
,
Wang
,
M.
,
Wei
,
Z.
,
Yu
,
H.
,
Wang
,
C.
,
Wang
,
D.
, and
Guo
,
T.
,
2024
, “
Study of the Fracture Propagation and the Corresponding Heat Mining Performance of Multi-branch Radial Wells Geothermal System Based on the THM-D Coupling Model
,”
Geoenergy Sci. Eng.
,
243
(
3
), p.
213302
.
4.
Yan
,
C.
,
Zhao
,
F.
,
Huang
,
S.
,
Sun
,
H.
,
Li
,
J.
,
Yang
,
C.
, and
Su
,
Z.
,
2024
, “
Oil and Water Movement Patterns in Fishbone Wells With Different Branch Angles
,”
Oilfield Chem.
,
41
(
01
), pp.
61
70
.
5.
Ghazwan
,
N.
, and
Ghanim
,
M.
,
2024
, “
Using ANN for Well Type Identifying and Increasing Production From Sa’di Formation of Halfaya Oil Field-Iraq
,”
Open Eng.
,
14
(
1
), p.
20220444
.
6.
Yi
,
X.
, and
Tang
,
J.
,
2023
, “
Optimization of Process Parameters for Acid Fracturing Assisted Herringbone Well SAGD
,”
Vibroeng. Procedia
,
49
(
6
), pp.
227
232
.
7.
Luo
,
C.
,
Cao
,
Y.
,
Liu
,
Y.
,
Zhong
,
S.
,
Zhao
,
S.
,
Liu
,
Z.
,
Liu
,
Y.
, and
Zheng
,
D.
,
2023
, “
Experimental and Modeling Investigation on Gas-Liquid Two-Phase Flow in Horizontal Gas Wells
,”
ASME J. Energy Resour. Technol.
,
145
(
1
), p.
013102
.
8.
Zhao
,
J.
,
Wang
,
Z.
,
Lin
,
R.
,
Ren
,
L.
,
Wu
,
J.
, and
Wu
,
J.
,
2023
, “
Numerical Simulation of Diverting Fracturing for Staged Fracturing Horizontal Well in Shale Gas Reservoir
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
053202
.
9.
Zhou
,
Z.
,
Cui
,
C.
,
Zheng
,
D.
,
Li
,
K.
,
Xuan
,
Y.
, and
Wang
,
C.
,
2023
, “
Transient Productivity Analysis and Completion Parameter Optimization of Perforating Herringbone Wells
,”
ACS Omega
,
8
(
20
), pp.
17841
17855
.
10.
Sun
,
E.
,
Yang
,
D.
,
Yang
,
W.
,
Tian
,
J.
, and
Peng
,
Q.
,
2020
, “
Productivity Prediction and Its Influencing Factors for Herring Bone-Like Laterals Well
,”
J. Chongqing Univ. Sci. Technol.
,
22
(
03
), pp.
22
35
.
11.
Yue
,
P.
,
Zhou
,
J.
,
Kang
,
L.
,
Liu
,
P.
,
Jia
,
C.
, and
Chen
,
X.
,
2021
, “
Reservoir and Wellbore Flow Coupling Model for Fishbone Multilateral Wells in Bottom Water Drive Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
123001
.
12.
Zhai
,
L.
,
Yang
,
M.
,
Yan
,
C.
,
Tian
,
T.
, and
Huang
,
S.
,
2022
, “
Dynamic Distribution Characteristics of Oil and Water During Water Flooding in a Fishbone Well With Different Branch Angles
,”
ACS Omega
,
7
(
31
), pp.
27206
27215
.
13.
Ye
,
H.
,
Daoyi Chen
,
D.
,
Yao
,
Y.
,
Wu
,
X.
,
Li
,
D.
, and
Zi
,
M.
,
2024
, “
Exploration of Production Capacity-Geomechanical Evaluation and CO2 Reinjection Repair Strategy in Natural Gas Hydrate Production by Multilateral Horizontal Wells
,”
Energy
,
296
(
3
), p.
131097
.
14.
Cao
,
X.
,
Sun
,
J.
,
Qin
,
F.
,
Ning
,
F.
,
Mao
,
P.
,
Gu
,
Y.
,
Li
,
Y.
,
Zhang
,
H.
,
Yu
,
Y.
, and
Wu
,
N.
,
2023
, “
Numerical Analysis on Gas Production Performance by Using a Multilateral Well System at the First Offshore Hydrate Production Test Site in the Shenhu Area
,”
Energy
,
270
(
6
), p.
126690
.
15.
Pang
,
Z.
,
Chen
,
J.
,
Liu
,
D.
, and
Zhou
,
Y.
,
2022
, “
Macro-and Microanalysis on Noncondensable Gas Antiwater Invasion in a Bottom Water Reservoir With a Rupturable Interlayer
,”
ACS Omega
,
7
(
42
), pp.
37180
37188
.
16.
Safari
,
M.
,
Ameri
,
M.
,
Gholami
,
R.
, and
Rahimi
,
A.
,
2021
, “
Water Coning Control Concurrently With Permeability Estimation Using Ensemble Kalman Filter Associated Boundary Control Approach
,”
J. Pet. Sci. Eng.
,
203
(
7
), p.
108590
.
17.
Qu
,
J.
,
Wang
,
P.
,
You
,
Q.
,
Zhao
,
G.
,
Sun
,
Y.
, and
Liu
,
Y.
,
2022
, “
Soft Movable Polymer Gel for Controlling Water Coning of Horizontal Well in Offshore Heavy Oil Cold Production
,”
Gels
,
8
(
6
), p.
352
.
18.
Zhu
,
P.
,
Balhoff
,
M.
, and
Mohanty
,
K.
,
2017
, “
Compositional Modeling of Fracture-to-Fracture Miscible Gas Injection in an Oil-Rich Shale
,”
J. Pet. Sci. Eng.
,
152
(
4
), pp.
628
638
.
19.
Cavalcante
,
J.
,
Xu
,
Y.
, and
Sepehrnoori
,
K.
,
2015
, “
Modeling Fishbones Using the Embedded Discrete Fracture Model Formulation: Sensitivity Analysis and History Matching
,”
SPE
,
43
(
3
), pp.
301
321
.
20.
Arcos
,
D.
,
Zhu
,
D.
, and
Bickel
,
E.
,
2008
, “
Technical, Economic and Risk Analysis for a Multilateral Well
,”
SPE
,
75
(
3
), pp.
2
17
.
21.
Hu
,
J.
,
Di
,
Y.
,
Tang
,
Q.
,
Ren Wen
,
R.
, and
Liu
,
H.
,
2021
, “
Application of Water-Control Technique for the Horizontal Well in Bottom-Water Reservoir
,”
J. Res. Sci. Eng.
,
3
(
7
).
22.
Ndulue
,
F.
,
Tomomewo
,
S.
, and
Khalifa
,
H.
,
2023
, “
A Comprehensive Review of Fishbone Well Applications in Conventional and Renewable Energy Systems in the Path Towards Net Zero
,”
Fuels
,
4
(
4
), pp.
376
396
.
23.
Al-Rbeawi
,
S.
, and
Artun
,
E.
,
2019
, “
Fishbone Type Horizontal Wellbore Completion: A Study for Pressure Behavior, Flow Regimes, and Productivity Index
,”
J. Pet. Sci. Eng.
,
176
(
21
), pp.
172
202
.
24.
Hassan
,
A.
,
Elkatatny
,
S.
, and
Abdulraheem
,
A.
,
2019
, “
Application of Artificial Intelligence Techniques to Predict the Well Productivity of Fishbone Wells
,”
Sustainability
,
11
(
21
), pp.
6083
6083
.
25.
Liu
,
P.
,
Zhou
,
Y.
,
Liu
,
P.
,
Shi
,
L.
,
Li
,
X.
, and
Li
,
L.
,
2019
, “
Numerical Study of Herringbone Injector-Horizontal Producer Steam Assisted Gravity Drainage (HI-SAGD) for Extra-Heavy Oil Recovery
,”
J. Pet. Sci. Eng.
,
181
(
7
), pp.
106227
106227
.
26.
Yu
,
F.
,
Huang
,
G.
,
Ni
,
H.
,
Nie
,
Z.
,
Li
,
W.
,
Li
,
J.
, and
Jiang
,
W.
,
2019
, “
Analysis of the Main Factors Affecting Bottom Hole Assembly Re-Entry Into Main Hole in Forward Drilling of Fishbone Wells
,”
J. Pet. Sci. Eng.
,
189
(
3
), pp.
107018
107018
.
27.
Fan
,
Y.
,
Han
,
G.
, and
Yang
,
C.
,
2006
, “
Production Forecast for Herringbone Well and Optimum Configuration of Lateral Holes
,”
Acta Petrol. Sin.
,
27
(
4
), pp.
101
104
.
28.
Ying
,
J.
,
2008
, “
Research on Productivity Law of Herringbone Multilateral Gas Well
,”
Acta Petrol. Sin.
,
29
(
5
), pp.
727
733
.
29.
Voronin
,
A.
,
Gilmanov
,
Y.
,
Eremeev
,
D.
,
Dubrovin
,
A.
,
Abaltusov
,
N.
, and
Perunov
,
A.
,
2017
, “
An Analysis of Rotary Steerable Systems for Sidetracking in Open Hole Fishbone Multilateral Wells in Vostochno-Messoyakhskoye Field
,”
Russian Petroleum Technology Conference
,
Moscow, Russia
,
Oct. 16–18
.
30.
Gringarten
,
C.
, and
Ramey
,
J.
,
1973
, “
The Use of Source and Green’s Functions in Solving Unsteady-Flow Problems in Reservoirs
,”
Soc. Pet. Eng. J.
,
13
(
5
), pp.
285
296
.
31.
Sobhaniaragh
,
B.
,
Trevelyan
,
J.
,
Mansur
,
W.
, and
Peters
,
F.
,
2017
, “
Numerical Simulation of MZF Design With Non-Planar Hydraulic Fracturing From Multi-Lateral Horizontal Wells
,”
J. Nat. Gas Sci. Eng.
,
46
(
6
), pp.
93
107
.
32.
Liu
,
Y.
,
Yang
,
T.
,
Chen
,
L.
,
Yang
,
D.
,
Wang
,
H.
, and
Yang
,
W.
,
2014
, “
Design and Optimize the Branch Pattern of Herringbone Well
,”
Appl. Mech. Mater.
,
3360
(
599–601
), pp.
254
257
.
33.
Xu
,
Y.
, and
Sepehrnoori
,
K.
,
2019
, “
Development of an Embedded Discrete Fracture Model for Field-Scale Reservoir Simulation With Complex Corner-Point Grids
,”
SPE J.
,
24
(
4
), pp.
1552
1575
.
34.
Li
,
Q.
,
Yong
,
R.
,
Wu
,
J.
, and
Miao
,
J.
,
2021
, “
An Integrated Assisted History Matching and Embedded Discrete Fracture Model Workflow for Well Spacing Optimization in Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073004
.
35.
Jiang
,
J.
, and
Younis
,
R. M.
,
2016
, “
Hybrid Coupled Discrete-Fracture/Matrix and Multi-Continuum Models for Unconventional-Reservoir Simulation
,”
SPEJ.
,
21
(
3
), pp.
1009
1027
.
36.
Chai
,
Z.
,
Yan
,
B.
,
Killough
,
J. E.
, and
Wang
,
Y.
,
2018
, “
An Efficient Method for Fractured Shale Reservoir History Matching: The Embedded Discrete Fracture Multi-Continuum Approach
,”
J. Pet. Sci. Eng.
,
160
(
7
), pp.
170
181
.
37.
Yu
,
H.
,
Yang
,
Z.
,
Luo
,
L.
,
Liu
,
J.
,
Cheng
,
S.
,
Qu
,
X.
,
Lei
,
Q.
, and
Liu
,
J.
,
2019
, “
Application of Cumulative-In-Situ-Injection-Production Technology to Supplement Hydrocarbon Recovery Among Fractured Tight Oil Reservoirs: A Case Study in Changing Oilfield, China
,”
Fuel
,
242
(
3
), pp.
804
808
.
You do not currently have access to this content.