Abstract

This study evaluates how the production strategy influences the main decision-making indicators in the development of the production of a Brazilian presalt field, considering reservoir and production system models integrated into a single simulation. The general methodology involves the evaluation of alternative production strategies for a case study related to a production development project, from the point of view of reservoirs for the water injection recovery mechanism. Variables with a focus on the reservoir, production, and primary processing of fluids are included. Sensitivity analyses based on the methodology of the response surface of parameters and variables are performed in relation to oil recovery, financial return, energy demand, and carbon emission. Production and fluid injection curves are compared. The integrated modeling (reservoir, well, and processing) was important to evaluate the impact of the selection of the design and management variables of the integrated production strategy, showing the interdependence between the simulated models. The first-order analysis of the uncertain reservoir parameters observed a significant impact on the indicators of field recovery (up to 11%) and financial return (up to 13%), and a lower impact on energy demand (up to 7%), carbon emissions (up to 6%), and oil production per CO2 emitted (up to 4%). The design and management variables of the field (platform capacity, number of producer and injector wells, separation operating pressure, and maintenance pressure in the reservoir), including those related to the production system (platform process plant alternatives for gas recycling, gas turbine-driven compressors, primary separator operating pressure, and production control of the wells to limit CO2 emission) have a significant impact on the indicators of financial return (up to 10% without CO2 emission tax rate, up to 12% with emission tax rate), energy demand (up to 17%), carbon emissions (up to 15%), and oil production per CO2 emitted (up to 15%), with less impact on field recovery (up to 11%). The study quantifies the impact of production strategy variables in an integrated way, especially those related to the production system. This assessment is important for production forecasting and decision-making support on energy demand and greenhouse gas emissions from oil and gas production and processing.

References

1.
IPIECA
,
2023
, “Net-Zero Emissions: Supporting the Paris Agreement and Its Aims,” https://www.ipieca.org/resources/nze-briefing
2.
Song
,
C.
,
Gaffney
,
A. F.
, and
Fujimoto
,
K.
,
2002
, “CO2 Conversion and Utilization: An Overview,”
Conversion and Utilization
,
C.
Song
, ed.,
American Chemical Society
,
Washington, DC
, pp.
2
30
.
3.
Chu
,
H.
,
Huang
,
Z.
,
Zhang
,
Z.
,
Yan
,
X.
,
Qiu
,
B.
, and
Xu
,
N.
,
2024
, “
Integration of Carbon Emission Reduction Policies and Technologies: Research Progress on Carbon Capture, Utilization and Storage Technologies
,”
Sep. Purif. Technol.
,
343
, p.
127153
.
4.
Fraga
,
C. T. C.
,
Pinto
,
A. C. C.
,
Branco
,
C. C. M.
,
Pizarro
,
J. O. S.
, and
Paulo
,
C. A. S.
,
2015
, “
Brazilian Pre-salt: An Impressive Journey From Plans and Challenges to Concrete Results
,”
Paper Presented at the Offshore Technology Conference
,
Houston, TX
,
May 4
.
5.
Gaspar
,
A. T. F. S.
,
Barreto
,
C. E. A.
,
Mazo
,
E. O. M.
, and
Schiozer
,
D. J.
,
2016
, “
Assisted Process for Design Optimization of Oil Exploitation Strategy
,”
J. Petrol. Sci. Eng.
,
146
, pp.
473
488
.
6.
Ribeiro
,
J.
,
Barbosa Neto
,
A. M.
, and
Bannwart
,
A. C.
,
2013
, “
Análise Integrada Entre Reservatório e Escoamento Para um Campo Marítimo de Elevada Pressão
,”
Paper Presented at the 7° Congresso Brasileiro de P&D em Petróleo e Gás (PDPETRO)
,
Aracaju, Sergipe
,
Oct. 30
.
7.
Gallo
,
W. L. R.
,
Gallego
,
A. G.
,
Acevedo
,
V. L.
,
Dias
,
R.
,
Ortiz
,
H. Y.
, and
Valente
,
B. A.
,
2017
, “
Exergy Analysis of the Compression Systems and Its Prime Movers for a FPSO Unit
,”
J. Nat. Gas Sci. Eng.
,
44
, pp.
287
298
.
8.
Rodrigues
,
H. W. L.
,
Mackay
,
E. J.
, and
Arnold
,
D. P.
,
2022
, “
Multi-objective Optimization of CO2 Recycling Operations for CCUS in Pre-salt Carbonate Reservoirs
,”
Int. J. Greenhouse Gas Control
,
119
, p.
103719
.
9.
Angga
,
I. G. A. G.
,
Bellout
,
M.
,
Kristoffersen
,
B. S.
,
Bergmo
,
P. E. S.
,
Slotte
,
A.
, and
Berg
,
C. F.
,
2022
, “
Effect of CO2 Tax on Energy Use in Oil Production: Waterflooding Optimization Under Different Emission Costs
,”
SN Appl. Sci.
,
4
(
11
), p.
313
.
10.
Skjerve
,
K. B.
,
Martinsen
,
F.
,
Solbraa
,
E.
, and
Espelid
,
Ø.
,
2022
, “
ECalc—A Computationally Efficient Tool for Emission Forecasting
.”
Paper Presented at the SPE Norway Subsurface Conference
,
Bergen, Norway
,
Apr. 27
,.
11.
Manna
,
A. K.
,
Rahman
,
M. S.
,
Shaikh
,
A. A.
,
Bhunia
,
A. K.
, and
Konstantaras
,
I.
,
2022
, “
Modeling of a Carbon Emitted Production Inventory System With Interval Uncertainty Via Meta-heuristic Algorithms
,”
Appl. Math. Model.
,
106
, pp.
343
368
.
12.
Rotondi
,
M.
,
Cominelli
,
A.
,
Di Giorgio
,
C.
,
Rossi
,
R.
,
Vignati
,
E.
, and
Caraati
,
B.
,
2008
, “
The Benefits of Integrated Asset Modeling: Lesson Learned From Field Cases
,”
Paper Presented at the Europec/EAGE Annual Conference and Exhibition
,
Society of Petroleum Engineers
,
Roma
,
June 9
.
13.
Schiozer
,
D. J.
,
Santos
,
A. A. S.
,
Santos
,
S. M. G.
, and
Hohendorff Filho
,
J. C. V.
,
2019
, “
Model-Based Decision Analysis Applied to Petroleum Field Development and Management
,”
Oil Gas Sci. Technol.
,
74
, pp.
1
20
.
14.
Bauer
,
K. W.
Jr
,
Parnell
,
G. S.
, and
Meyers
,
D. A.
,
1999
, “
Response Surface Methodology as a Sensitivity Analysis Tool in Decision Analysis
,”
J. Multi-Crit. Decis. Anal.
,
8
, pp.
162
180
.
15.
Ferreira
,
F. D. G.
,
2018
, “
Estudo Comparativo de Modelos e Técnicas Para Otimização de Portfólios Com Restrição de Cardinalidade
,”
Master dissertation
,
Centro Federal de Educação Tecnológica de Minas Gerais
,
Belo Horizonte
.
16.
Ribeiro
,
J.
,
2014
, “
Análise Integrada dos Modelos de Reservatório, Escoamento e Processamento Aplicada ao Projeto Conceitual de Sistemas de Produção de Petróleo
,”
Master dissertation
,
Universidade Estadual de Campinas
,
Campinas, São Paulo
.
17.
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
J. D.
,
2014
, “
Evaluation of Explicit Coupling Between Reservoir Simulators and Production System
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p. 044501.
18.
Ierusalimschy
,
R.
,
de Figueiredo
,
L. H.
, and
Filho
,
W. C.
,
1996
, “
Lua—An Extensible Extension Language
,”
Softw.: Pract. Exp.
,
26
, pp.
635
652
.
19.
Yoo
,
M.
,
Lessard
,
L.
,
Kermani
,
M.
, and
Maréchal
,
F.
,
2015
, “
OsmoseLua—An Integrated Approach to Energy Systems Integration With LCIA and GIS
,”
Comput. Aided Chem. Eng.
,
37
, pp.
587
592
.
20.
Rosa
,
A. J.
,
Xavier
,
A. D.
, and
Carvalho
,
R. S.
,
2006
,
Engenharia de Reservatórios de Petróleo
,
Editora Interciência
,
Rio de Janeiro
.
21.
Corrêa
,
A. C. F.
,
2007
, “
Forecasting Oil Production in Waterflooded Reservoirs
,”
Paper Presented at the Latin American and Caribbean Petroleum Engineering Conference
,
Buenos Aires
,
Apr. 15–18
.
22.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
23.
Hohendorff Filho
,
J. C. V.
,
Victorino
,
I. R. S.
,
Bigdeli
,
A.
,
Castro
,
M. S.
, and
Schiozer
,
J. D.
,
2024
, “
Effect of Production System Uncertainties on Production Forecast, Energy Demand, and Carbon Emissions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
46
(
3
), p.
115
.
24.
Botechia
,
V. E.
,
Correia
,
M. G.
,
Rios
,
V. S.
,
Davolio
,
A.
,
Santos
,
S. M. G.
,
Hohendorff Filho
,
J. C. V.
, and
Schiozer
,
D. J.
,
2022
, “
UNISIM-IV: Benchmark Proposal for Light Oil Carbonate Reservoir With High CO2 Content
,”
Braz. J. Pet. Gas
,
16
(
4
), pp.
149
160
.
25.
Andrade
,
A. M. T.
,
Vaz
,
C. E. M.
,
Ribeiro
,
J.
,
Lopreato
,
L. G. R.
, and
Nascimento
,
R. F. S. N.
,
2015
, “
Offshore Production Units for Pre-salt Projects
,”
Paper Presented at the Offshore Technology Conference
,
Houston, TX
,
May 4
.
26.
Standing
,
M. B.
,
1947
, “A Pressure-Volume-Temperature Correlation for Mixtures of California Oils and Gases,”
Drilling and Production Practice
,
American Petroleum Institute
,
New York
, pp.
275
287
.
27.
Santim
,
C. G. S.
,
Fulchignoni
,
L. P.
,
Rosa
,
E. S.
, and
Gaspari
,
E. F.
,
2020
, “
Transient Multiphase Flow Modeling and Validation in a Real Production System With High CO2 Content Using the Drift-Flux Model
,”
J. Pet. Sci. Eng.
,
188
, p.
106903
.
28.
Bhagwat
,
S. M.
, and
Ghajar
,
A. J.
,
2014
, “
A Flow Pattern Independent Drift Flux Model Based Void Fraction Correlation for a Wide Range Gas-Liquid Two Phase Flow
,”
Int. J. Multiphase Flow
,
104
, pp.
60
73
.
29.
SPE, AAPG, WPC and SPEE
,
2011
, “Guidelines for Application of the Petroleum Resources Management System,” Society of Petroleum Engineers, http://www.spe.org/industry/docs/PRMS_Guidelines_Nov2011.pdf
30.
Ertekin
,
T.
,
Abou-Hassem
,
J. H.
, and
King
,
G. R.
,
2001
,
Basic Applied Reservoir Simulation. SPE Textbook Series
,
Society of Petroleum Engineers
,
Richardson, TX
.
You do not currently have access to this content.