Abstract

The semi-open centrifugal pump plays a critical role in energy conversion and fluid transport. However, the formation of the tip clearance jet (TCJ) complicates the flow pattern, leading to a significant reduction in energy conversion efficiency. In practice, an empirical formula is frequently employed to estimate energy losses at the blade tips, but this method is constrained by single-point predictions and low accuracy. This study proposes a rapid theoretical approach based on fluid element forces to more accurately estimate energy losses associated with TCJ in centrifugal blades. Our results demonstrate the effectiveness of this approach in predicting differential pressure at the blade tip, jet flow rates, and jet energy losses, with average errors of 4.73%, 4.41%, and 5.42% relative to numerical simulations. From a theoretical perspective, we confirm that differential pressure is the primary driving force behind TCJ formation. In engineering cases with gap sizes of 0.5 mm and 1.1 mm, the empirical formula resulted in prediction errors of 20.08% and 16.34%, respectively. In contrast, our theoretical approach achieves a prediction error of less than 4.5% at the design point, with a 72% improvement in accuracy, while maintaining high precision even under off-design conditions. These findings highlight the advantages of our approach, including its multipoint prediction capability and high precision. This study introduces a novel method for estimating energy losses in centrifugal pumps due to TCJ.

References

1.
Han
,
Y.
,
Li
,
H.
,
Tiganik
,
T.
,
Wang
,
Y.
, and
Zhou
,
L.
,
2023
, “
Influence Mechanism of Trimming Impeller Diameter in a Centrifugal Pump by Computational Fluid Dynamics Investigation
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021205
.10.1115/1.4056210
2.
Yang
,
Y.
,
Chen
,
X.
,
Bai
,
L.
,
Wang
,
H.
,
Ji
,
L.
, and
Zhou
,
L.
,
2024
, “
Energy Performance Prediction Model for Mixed-Flow Pumps by Considering the Effect of Incoming Prerotation
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061204
.10.1115/1.4064388
3.
Wang
,
K.
,
Liu
,
H.
,
Wang
,
L.
,
Guo
,
P.
,
Wang
,
Y.
, and
Yang
,
J.
,
2024
, “
Effect of Particle Size on Vortex Structure and Erosion Behavior of Semi-Open Centrifugal Pump
,”
Energy
,
293
, p.
130576
.10.1016/j.energy.2024.130576
4.
Han
,
Y.
,
Bai
,
L.
,
Du
,
D.
,
Shi
,
W.
, and
Zhou
,
L.
,
2023
, “
Effects of Tip Clearance on Energy Performance of Three-Stage Electrical Submersible Pump
,”
Geoenergy Sci. Eng.
,
226
, p.
211696
.10.1016/j.geoen.2023.211696
5.
Liu
,
Y.
, and
Tan
,
L.
,
2020
, “
Theoretical Prediction Model of Tip Leakage Vortex in a Mixed Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021203
.10.1115/1.4044982
6.
Zeng
,
Y.
,
Yao
,
Z.
,
Zhang
,
S.
,
Wang
,
F.
, and
Xiao
,
R.
,
2021
, “
Influence of Tip Clearance on the Hydrodynamic Damping Characteristics of a Hydrofoil
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061202
.10.1115/1.4049675
7.
Lin
,
Y.
,
Li
,
X.
,
Li
,
B.
,
Jia
,
X.
, and
Zhu
,
Z.
,
2021
, “
Influence of Impeller Sinusoidal Tubercle Trailing-Edge on Pressure Pulsation in a Centrifugal Pump at Nominal Flow Rate
,”
ASME J. Fluids Eng.
,
143
(
9
), p.
091205
.10.1115/1.4050640
8.
Han
,
Y.
, and
Tan
,
L.
,
2023
, “
Experimental Investigation on Spatial-Temporal Evolution of Tip Leakage Cavitation in a Mixed Flow Pump With Tip Clearance
,”
Int. J. Multiphase Flow
,
164
, p.
104445
.10.1016/j.ijmultiphaseflow.2023.104445
9.
Im
,
H.
, and
Zha
,
G.
,
2014
, “
Investigation of Flow Instability Mechanism Causing Compressor Rotor-Blade Nonsynchronous Vibration
,”
AIAA J.
,
52
(
9
), pp.
2019
2031
.10.2514/1.J052781
10.
Rains
,
D. A.
,
1954
,
Tip Clearance Flows in Axial Compressors and Pumps
,
California Institute of Technology
,
Pasadena, CA
.
11.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor-Tip Leakage: Part I—Basic Methodology
,”
ASME J. Eng. Power
,
104
(
1
), pp.
154
161
.10.1115/1.3227244
12.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.10.1115/1.3262162
13.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
(
4
), pp.
578
584
.10.1115/1.2836571
14.
Kang
,
S.
, and
Hirsch
,
C.
,
1993
, “
Experimental Study on the Three-Dimensional Flow Within a Compressor Cascade With Tip Clearance: Part II—The Tip Leakage Vortex
,”
ASME J. Turbomach.
,
115
(
3
), pp.
444
450
.10.1115/1.2929271
15.
Kang
,
S.
, and
Hirsch
,
C.
,
1994
, “
Tip Leakage Flow in Linear Compressor Cascade
,”
ASME J. Turbomach.
,
116
(
4
), pp.
657
664
.10.1115/1.2929458
16.
Han
,
Y.
, and
Tan
,
L.
,
2023
, “
Spatial-Temporal Evolution of Tip Leakage Cavitation With Double-Hump in a Mixed Flow Pump With Tip Clearance
,”
Phys. Fluids
,
35
(
4
), p.
045152
.10.1063/5.0145676
17.
Han
,
B.
,
Tan
,
L.
, and
Han
,
Y.
,
2024
, “
Role of Wall Roughness on Interaction of Leakage Flow and Main Flow in a Mixed Flow Pump With Tip Clearance
,”
Phys. Fluids
,
36
(
1
), p.
015121
.10.1063/5.0181235
18.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
19.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.10.1007/s00348-011-1189-9
20.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Model.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
21.
Riéra
,
W.
,
Marty
,
J.
,
Castillon
,
L.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulation Applied to the Tip-Clearance Flow in an Axial Compressor
,”
AIAA J.
,
54
(
8
), pp.
2377
2391
.10.2514/1.J054438
22.
Parikh
,
T.
,
Mansour
,
M.
, and
Thévenin
,
D.
,
2020
, “
Investigations on the Effect of Tip Clearance Gap and Inducer on the Transport of Air-Water Two-Phase Flow by Centrifugal Pumps
,”
Chem. Eng. Sci.
,
218
, p.
115554
.10.1016/j.ces.2020.115554
23.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
24.
Qin
,
T.
,
Tong
,
Z.
,
Li
,
D.
,
He
,
Y.
, and
Hung
,
T.
,
2024
, “
Aerothermal Performance of Cavity Tip With Flow Structure Effects in a Transonic High-Pressure Turbine Blade
,”
Energy
,
291
, p.
130411
.10.1016/j.energy.2024.130411
25.
Kan
,
K.
,
Li
,
H.
,
Chen
,
H.
,
Xu
,
H.
,
Gong
,
Y.
,
Li
,
T.
, and
Shen
,
L.
,
2023
, “
Effects of Clearance and Operating Conditions on Tip Leakage Vortex-Induced Energy Loss in an Axial-Flow Pump Using Entropy Production Method
,”
ASME J. Fluids Eng.
,
145
(
3
), p.
031201
.10.1115/1.4056119
26.
Xu
,
W.
,
Lu
,
W.
,
Sun
,
D.
,
Ren
,
G.
, and
Zou
,
S.
,
2024
, “
Effect of Pressure-Side Tip Winglet With Different Heights and Lengths on Clearance Flow in a Compressor Cascade
,”
Phys. Fluids (1994)
,
36
(
3
), p.
034107
.10.1063/5.0189287
27.
Huang
,
Y.
,
Zhang
,
D.
,
Wang
,
F.
,
Zhang
,
G.
, and
van Esch
,
B. P. M. B.
,
2021
, “
Vortex Suppression of the Tip Leakage Flow Over a NACA0009 Hydrofoil Via a Passive Jet Induced by the Double-Control-Hole
,”
Ocean Eng.
,
237
, p.
109647
.10.1016/j.oceaneng.2021.109647
28.
Ayad
,
A. F.
,
Abdalla
,
H. M.
, and
El-Azm Aly
,
A. A.
,
2015
, “
Effect of Semi-Open Impeller Side Clearance on the Centrifugal Pump Performance Using CFD
,”
Aerosp. Sci. Technol.
,
47
, pp.
247
255
.10.1016/j.ast.2015.09.033
29.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A high-Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
30.
Ghorani
,
M. M.
,
Sotoude Haghighi
,
M. H.
, and
Riasi
,
A.
,
2020
, “
Entropy Generation Minimization of a Pump Running in Reverse Mode Based on Surrogate Models and NSGA-II
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104898
.10.1016/j.icheatmasstransfer.2020.104898
31.
Pei
,
J.
,
Shen
,
J.
,
Wang
,
W.
,
Yuan
,
S.
, and
Zhao
,
J.
,
2024
, “
Evaluating Hydraulic Dissipation in a Reversible Mixed-Flow Pump for Micro-Pumped Hydro Storage Based on Entropy Production Theory
,”
Renewable Energy
,
225
, p.
120271
.10.1016/j.renene.2024.120271
32.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
33.
Hou
,
H.
,
Zhang
,
Y.
,
Li
,
Z.
,
Jiang
,
T.
,
Zhang
,
J.
, and
Xu
,
C.
,
2016
, “
Numerical Analysis of Entropy Production on a LNG Cryogenic Submerged Pump
,”
J. Nat. Gas Sci. Eng.
,
36
, pp.
87
96
.10.1016/j.jngse.2016.10.017
34.
Ji
,
L.
,
Li
,
W.
,
Shi
,
W.
,
Chang
,
H.
, and
Yang
,
Z.
,
2020
, “
Energy Characteristics of Mixed-Flow Pump Under Different Tip Clearances Based on Entropy Production Analysis
,”
Energy
,
199
, p.
117447
.10.1016/j.energy.2020.117447
35.
Denton
,
J. D.
,
1993
, “
Loss Mechanism in Turbomachines
,”
ASME
Paper No. 93-GT-435.10.1115/93-GT-435
36.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
37.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
38.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
39.
Menter
,
F.
,
Hüppe
,
A.
,
Matyushenko
,
A.
, and
Kolmogorov
,
D.
,
2021
, “
An Overview of Hybrid RANS–LES Models Developed for Industrial CFD
,”
Appl. Sci.
,
11
(
6
), p.
2459
.10.3390/app11062459
40.
Menter
,
F.
,
2018
,
Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling
,
Springer International Publishing
,
Cham, Switzerland
, pp.
27
37
.
41.
Yu
,
A.
,
Tang
,
Y.
,
Tang
,
Q.
,
Cai
,
J.
,
Zhao
,
L.
, and
Ge
,
X.
,
2022
, “
Energy Analysis of Francis Turbine for Various Mass Flow Rate Conditions Based on Entropy Production Theory
,”
Renewable Energy
,
183
, pp.
447
458
.10.1016/j.renene.2021.10.094
42.
Ghasemi
,
E.
,
Mceligot
,
D. M.
,
Nolan
,
K. P.
,
Crepeau
,
J.
,
Tokuhiro
,
A.
, and
Budwig
,
R. S.
,
2013
, “
Entropy Generation in a Transitional Boundary Layer Region Under the Influence of Freestream Turbulence Using Transitional RANS Models and DNS
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
10
16
.10.1016/j.icheatmasstransfer.2012.11.005
43.
Jia
,
X.
,
Shen
,
S.
,
Zhang
,
S.
,
Lv
,
H.
,
Lin
,
Z.
, and
Zhu
,
Z.
,
2024
, “
Influence of Tip Clearance on Internal Energy Loss Characteristics of Axial Flow Pumps Under Different Operating Conditions
,”
Phys. Fluids
,
36
(
1
), p.
015102
.10.1063/5.0180984
44.
Shen
,
S.
,
Qian
,
Z.
, and
Ji
,
B.
,
2019
, “
Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory
,”
Energies
,
12
(
21
), p.
4162
.10.3390/en12214162
You do not currently have access to this content.