Abstract

Compressor fouling is one of the most prevalent fault modes that contribute to the performance degradation of a gas turbine power plant. Off-line washing is a standard maintenance procedure to recover the fouling degradation, but with washing cost. In this paper, an off-line washing schedule optimization method with a long short-term memory (LSTM) prediction model is proposed to maximize the plant net profit. First, a mechanism model-based gas path analysis method is developed to identify the fouling indications of compressor flow rate degradation (DGC) and compressor efficiency degradation (DEC). Second, a sliding window prediction method based on LSTM is proposed to accurately predict the nonlinear fouling trends. The prediction models are trained and tested by the true trends of the DGC and DEC that are identified from the field data of a real gas turbine power plant. The comparison results prove that the LSTM algorithm outperforms other machine learning algorithms. The mean relative square error of the DGC LSTM model is 9.72 × 10−4, and DEC is 4.08 × 10−4. Finally, a detailed economic model is developed by coupling the fouling prediction model with the gas turbine performance model. On this basis, an optimization method of the washing schedule is developed to maximize the net profit. Two case studies, under full load and field data, are carried out to verify the proposed optimization method. The results show that the washing schedules of the two case studies are much similar, in which three washing tasks with gradually reduced intervals are provided. Furthermore, the comparison results of different schedules show that the proposed optimal schedule has a huge potential in saving the net profit. It can save 3.26 million Yuan compared with the practical schedule adopted by the real power plant.

References

1.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation Due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.10.1115/1.4049765
2.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
3.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Timewise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081005
.10.1115/1.4049505
4.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
5.
Meher-Homji
,
C. B.
,
1992
, “
Gas Turbine Axial Compressor Fouling: A Unified Treatment of Its Effects, Detection, and Control
,”
Int. J. Turbo Jet Eng.
,
9
(
4
), pp.
311
334
.10.1515/TJJ.1992.9.4.311
6.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2007
, “
A Study of on-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.10.1115/1.2181180
7.
Kacprzynski
,
G. J.
,
Gumina
,
M.
,
Roemer
,
M. J.
,
Caguiat
,
D. E.
,
Galie
,
Thomas
,
R.
, and
McGroarty
,
J. J.
,
2001
, “
A Prognostic Modeling Approach for Predicting Recurring Maintenance for Shipboard Propulsion Systems
,”
ASME
Paper No. 2001-GT-0218.10.1115/2001-GT-0218
8.
Meher-Homji
,
C. B.
, and
Bromley
,
A.
,
2004
, “
Gas Turbine Axial Compressor Fouling and Washing
,”
Proceedings of the 33rd Turbomachinery Symposium
,
Texas A&M University
, Houston, TX, Sept. 20–23, pp.
163
192
.10.21423/R1S66R
9.
Rao
,
P.
, and
Naikan
,
V. N.
,
2008
, “
An Optimal Maintenance Policy for Compressor of a Gas Turbine Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021801
.10.1115/1.2795762
10.
Martín-Aragón
,
J.
, and
Valdés
,
M.
,
2014
, “
A Method to Determine the Economic Cost of Fouling of Gas Turbine Compressors
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
261
266
.10.1016/j.applthermaleng.2013.11.051
11.
Fabbri
,
A.
,
Traverso
,
A.
, and
Cafaro
,
S.
,
2011
, “
Compressor Performance Recovery Systems: A New Thermoeconomic Approach
,”
ASME
Paper No. GT2011-45121.10.1115/GT2011-45121
12.
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Doumouras
,
G.
, and
Mathioudakis
,
K.
,
2012
, “
Compressor Washing Economic Analysis and Optimization for Power Generation
,”
Appl. Energy
,
95
, pp.
77
86
.10.1016/j.apenergy.2012.02.016
13.
Allen
,
C. W.
,
Holcomb
,
C. M.
, and
de Oliveira
,
M.
,
2019
, “
Estimating Recoverable Performance Degradation Rates and Optimizing Maintenance Scheduling
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011032
.10.1115/1.4041004
14.
Hanachi
,
H.
,
Liu
,
J.
,
Ding
,
P.
,
Yong Kim
,
I.
, and
Mechefske
,
C. K.
,
2018
, “
Predictive Compressor Wash Optimization for Economic Operation of Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121006
.10.1115/1.4041168
15.
Bai
,
Y.
,
Hao
,
J.
,
Xie
,
D.
, and
Xu
,
T.
,
2021
, “
Research on Washing Cycle Optimization Model of Gas Turbine
,”
Proceedings of Sixth International Conference on Power and Renewable Energy
(
ICPRE
),
IEEE
, Shanghai, China, Sept. 17–20, pp.
1507
1511
.10.1109/ICPRE52634.2021.9635342
16.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.10.1115/1.4004403
17.
Stalder
,
J.-P.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.10.1115/1.1361108
18.
Veer
,
T.
,
Haglero̸d
,
K. K.
, and
Bolland
,
O.
,
2004
, “
Measured Data Correction for Improved Fouling and Degradation Analysis of Offshore Gas Turbines
,”
ASME
Paper No. GT2004-53760.10.1115/GT2004-53760
19.
Jordal
,
K.
,
Assadi
,
M.
, and
Genrup
,
M.
,
2002
, “
Variations in Gas-Turbine Blade Life and Cost Due to Compressor Fouling–a Thermoeconomic Approach
,”
Int. J. Thermodyn.
,
5
(
1
), pp.
37
47
.https://dergipark.org.tr/en/pub/ijot/issue/5743/76626
20.
Zagorowska
,
M.
,
Ditlefsen
,
A.-M.
,
Thornhill
,
N. F.
, and
Skourup
,
C.
,
2019
, “
Turbomachinery Degradation Monitoring Using Adaptive Trend Analysis
,”
IFAC-PapersOnLine
,
52
(
1
), pp.
679
684
.10.1016/j.ifacol.2019.06.141
21.
Tsoutsanis
,
E.
, and
Meskin
,
N.
,
2017
, “
Derivative-Driven Window-Based Regression Method for Gas Turbine Performance Prognostics
,”
Energy
,
128
, pp.
302
311
.10.1016/j.energy.2017.04.006
22.
Muhammad
,
M.
,
Mohammadreza
,
T. B.
, and
Karim
,
Z. A.
,
2015
, “
Methodology for Short-Term Performance Prognostic of Gas Turbine Using Recurrent Neural Network
,”
Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management
(
IEEM
),
IEEE
, Singapore, Dec. 6–9, pp.
787
791
.10.1109/IEEM.2015.7385755
23.
Vatani
,
A.
,
Khorasani
,
K.
, and
Meskin
,
N.
,
2015
, “
Health Monitoring and Degradation Prognostics in Gas Turbine Engines Using Dynamic Neural Networks
,”
ASME
Paper No. GT2015-44101.10.1115/GT2015-44101
24.
Zhou
,
H.
,
Ying
,
Y.
,
Li
,
J.
, and
Jin
,
Y.
,
2021
, “
Long-Short Term Memory and Gas Path Analysis Based Gas Turbine Fault Diagnosis and Prognosis
,”
Adv. Mech. Eng.
,
13
(
8
), pp.
1
12
.10.1177/16878140211037767
25.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning for Improved System Remaining Life Prediction
,”
Procedia Cirp
,
72
, pp.
1033
1038
.10.1016/j.procir.2018.03.262
26.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Long Short-Term Memory for Machine Remaining Life Prediction
,”
J. Manuf. Syst.
,
48
, pp.
78
86
.10.1016/j.jmsy.2018.05.011
27.
Zhou
,
D.
,
Wei
,
T.
,
Huang
,
D.
,
Li
,
Y.
, and
Zhang
,
H.
,
2020
, “
A Gas Path Fault Diagnostic Model of Gas Turbines Based on Changes of Blade Profiles
,”
Eng. Fail. Anal.
,
109
, p.
104377
.10.1016/j.engfailanal.2020.104377
28.
Liu
,
J.
,
Li
,
Q.
,
Han
,
Y.
,
Zhang
,
G.
,
Meng
,
X.
,
Yu
,
J.
, and
Chen
,
W.
,
2019
, “
PEMFC Residual Life Prediction Using Sparse Autoencoder-Based Deep Neural Network
,”
IEEE Trans. Transp. Electrif.
,
5
(
4
), pp.
1279
1293
.10.1109/TTE.2019.2946065
29.
Dong
,
W.
,
Sun
,
H.
,
Tan
,
J.
,
Li
,
Z.
,
Zhang
,
J.
, and
Zhao
,
Y. Y.
,
2021
, “
Short-Term Regional Wind Power Forecasting for Small Datasets With Input Data Correction, Hybrid Neural Network, and Error Analysis
,”
Energy Rep.
,
7
, pp.
7675
7692
.10.1016/j.egyr.2021.11.021
30.
Bedi
,
J.
, and
Toshniwal
,
D.
,
2019
, “
Deep Learning Framework to Forecast Electricity Demand
,”
Appl. Energy
,
238
, pp.
1312
1326
.10.1016/j.apenergy.2019.01.113
31.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
,
IEEE
, Perth, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
You do not currently have access to this content.