Abstract

Fluid-induced forces generated by annular gas seals have aroused considerable attention owing to their substantial impact on the rotordynamic stability of turbomachinery. Positive preswirl at the seal entrance has been identified as the dominant factor in generating destabilizing forces. In this paper, a rotordynamic test rig was developed to measure the leakage and frequency-dependent dynamic coefficients of annular gas seals based on the mechanical impedance method. A tooth-on-stator labyrinth seal with a rotor diameter of 170.0 mm, a radial clearance of 0.3 mm, and a length-to-diameter ratio of 0.38 was tested under zero, positive, and negative preswirl conditions. Tests were conducted at three pressure ratios (PR = 0.20, 0.25, and 0.33) and three rotor speeds (ω = 3, 6, and 8.5 krpm) in an atmospheric backpressure environment. Test results indicate that both positive and negative inlet preswirl has little effect on the sealing capability of the labyrinth seal, whereas significantly influencing its rotordynamic performance. Compared to positive preswirl cases, the negative inlet preswirl produces negative cross-coupled stiffness and positive effective damping. The stabilizing forces are more pronounced at higher inlet pressure. The sensitivity of negative direct stiffness to variations in inlet pressure and rotor speed is also reduced under negative preswirl conditions, suggesting a smaller effect on rotor modes under variable operating conditions. Furthermore, a computational fluid dynamics analysis based on the frequency-sweep whirling orbit model is conducted for the test labyrinth seal to investigate the influence of inlet preswirl on local effective stiffness and damping distributions along seal axial positions. The accuracy and reliability of the present numerical method are demonstrated by comparing predictions to test data presented in this paper. Numerical results show that upstream cavities play a dominant role in generating effective stiffness and effective damping. The inlet preswirl has little effect on the local effective stiffness but determines the local effective damping, which is more pronounced in upstream cavities.

References

1.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
.
2.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
3.
Childs
,
D. W.
, and
Vance
,
J. M.
,
1997
, “
Annular Gas Seals and Rotordynamics of Compressors and Turbines
,”
Proceedings of the 26th Turbomachinery Symposium
,
Texas A&M University, Turbomachinery Laboratories
,
College Station, TX
, pp.
201
220
.10.21423/R1HT06
4.
Li
,
J.
,
De Choudhury
,
P.
, and
Kushner
,
F.
,
2003
, “
Evaluation of Centrifugal Compressor Stability Margin and Investigation of Antiswirl Mechanism
,”
Proceedings of the 32nd Turbomachinery Symposium
,
Texas A&M University, Turbomachinery Laboratories
,
College Station, TX
, pp.
49
57
.10.21423/R12D35
5.
Muszyńska
,
A.
,
2005
,
Rotordynamics
,
CRC Press
,
Boca Raton, FL
.
6.
Benckert
,
H.
, and
Wachter
,
J.
,
1980
, “
Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics
,”
Proceedings of Rotordynamic Instability Problems in High Performance Turbomachinery
,
NASA, Lewis Research Center
,
College Station, TX
, May 12–14, pp.
189
212
.https://ntrs.nasa.gov/api/citations/19800021216/downloads/19800021216.pdf
7.
San Andrés
,
L.
, and
Delgado
,
A.
,
2022
, “
Annular Clearance Gas Seals in the 21st Century: A Review of the Experimental Record on Leakage and Dynamic Force Coefficients, Including Comparisons of Model Predictions to Test Data
,”
Proceedings of the 51st Turbomachinery and Pump Symposia
,
Turbomachinery Laboratory, Texas A&M Engineering Experiment Station
,
Houston, TX
, Sept. 13–15, pp.
1
28
.https://rotorlab.tamu.edu/TRIBGROUP/TPS%20papers/2022%20TPS%20GAS%20Seals%20TUTORIAL%20(ppp).pdf
8.
Leong
,
Y. M. M. S.
, and
Brown
,
R. D.
,
1984
, “
Experimental Investigation of Lateral Forces Induced by Flow Through Model Labyrinth Glands
,”
Proceedings of Rotordynamic Instability Problems in High Performance Turbomachinery
,
NASA, Lewis Research Center
,
College Station, TX
, May 28–30, pp.
187
210
.https://www.ros.hw.ac.uk/handle/10399/1725?show=full
9.
Childs
,
D. W.
,
Nelson
,
C. E.
,
Nicks
,
C.
,
Scharrer
,
J.
,
Elrod
,
D.
, and
Hale
,
K.
,
1986
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Annular Gas Seals: Part 1—Test Facility and Apparatus
,”
ASME J. Tribol.
,
108
(
3
), pp.
426
431
.10.1115/1.3261226
10.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
Experimental Rotordynamic Coefficient Results for Teeth-on-Rotor and Teeth-on-Stator Labyrinth Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
108
(
4
), pp.
599
604
.10.1115/1.3239953
11.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part II—A Comparison to Experiment
,”
ASME J. Vib. Acoust.
,
110
(
3
), pp.
281
287
.10.1115/1.3269514
12.
Pelletti
,
J. M.
, and
Childs
,
D. W.
,
1991
, “
A Comparison of Experimental Results and Theoretical Predictions for the Rotordynamic Coefficients of Short (L/D = 1/6) Labyrinth Seals
,”
ASME
Paper No. DETC1991-0231.10.1115/DETC1991-0231
13.
Dawson
,
M. P.
,
Childs
,
D. W.
,
Holt
,
C. G.
, and
Phillips
,
S. G.
,
2002
, “
Measurements Versus Predictions for the Dynamic Impedance of Annular Gas Seals—Part I: Test Facility and Apparatus
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
958
962
.10.1115/1.1478075
14.
Picardo
,
A. M.
,
2003
, “
High Pressure Testing of See-Through Labyrinth Seals
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/items/bd42b02b-d61e-4164-8acb-13d7cd40261a
15.
Mehta
,
N.
,
2012
, “
Comparison of a Slanted-Tooth See-Through Labyrinth Seal to a Straight-Tooth See-Through Labyrinth Seal for Rotordynamic Coefficients and Leakage
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.https://oaktrust.library.tamu.edu/server/api/core/bitstreams/76792823-4e24-416e-a248-86ea7c4becff/content
16.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
17.
Shrestha
,
H.
,
Childs
,
D. W.
,
Tran
,
D. L.
, and
Zhang
,
M.
,
2019
, “
Experimental Study of the Static and Dynamic Characteristics of a Long (L/D=0.75) Labyrinth Annular Seal Operating Under Two-Phase (Liquid/Gas) Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111002
.10.1115/1.4044309
18.
Rhode
,
D. L.
,
Hensel
,
S. J.
, and
Guidry
,
M. J.
,
1992
, “
Labyrinth Seal Rotordynamic Forces Using a Three-Dimensional Navier-Stokes Code
,”
ASME J. Tribol.
,
114
(
4
), pp.
683
689
.10.1115/1.2920936
19.
Kirk
,
G.
, and
Gao
,
R.
,
2012
, “
Influence of Preswirl on Rotordynamic Characteristics of Labyrinth Seals
,”
Tribol. Trans.
,
55
(
3
), pp.
357
364
.10.1080/10402004.2012.656880
20.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Labyrinth Seal Rotordynamic Characteristics Part I: Operational Conditions Effects
,”
J. Propul. Power
,
32
(
5
), pp.
1199
1211
.10.2514/1.B35816
21.
Tsukuda
,
T.
,
Hirano
,
T.
,
Watson
,
C.
,
Morgan
,
N. R.
,
Weaver
,
B. K.
, and
Wood
,
H. G.
,
2018
, “
A Numerical Investigation of the Effect of Inlet Preswirl Ratio on Rotordynamic Characteristics of Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082506
.10.1115/1.4039360
22.
Childs
,
D. W.
,
Mclean
,
J. E.
,
Zhang
,
M.
, and
Arthur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.10.1115/1.4031877
23.
Soto
,
E. A.
, and
Childs
,
D. W.
,
1999
, “
Experimental Rotordynamic Coefficient Results for (a) a Labyrinth Seal With and Without Shunt Injection and (b) a Honeycomb Seal
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
153
159
.10.1115/1.2816303
24.
Vannini
,
G.
,
Cioncolini
,
S.
,
Del Vescovo
,
G.
, and
Rovini
,
M.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022501
.10.1115/1.4025360
25.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Comparison of Rotordynamic Characteristics for a Fully Partitioned Pocket Damper Seal and a Labyrinth Seal With High Positive and Negative Inlet Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042505
.10.1115/1.4031545
26.
Wang
,
T.
,
Li
,
Z.
, and
Li
,
J.
,
2025
, “
A Wide-Bandwidth and High-Resolution Identification Method for the Dynamic Characteristics of Annular Gas Seals Using Hilbert Transform
,”
ASME J. Eng. Gas Turbines Power
,
147
(
2
), p.
021024
.10.1115/1.4066718
27.
Argüelles Díaz
,
K. M.
,
Fernández Oro
,
J. M.
, and
Blanco Marigorta
,
E.
,
2009
, “
Cylindrical Three-Hole Pressure Probe Calibration for Large Angular Range
,”
Flow Meas. Instrum.
,
20
(
2
), pp.
57
68
.10.1016/j.flowmeasinst.2008.12.001
28.
Zhang
,
M.
,
Mclean
,
J. E.
, and
Childs
,
D. W.
,
2017
, “
Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal With Two-Phase, Mainly Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
122504
.10.1115/1.4037607
29.
ANSYS, Inc.
,
2006
,
ANSYS ICEM CFD 11.0 User's Manual
,
ANSYS
,
Canonsburg, PA
.
30.
ANSYS, Inc.
,
2006
,
ANSYS CFX-Solver 11.0 Theory Guide
,
ANSYS
,
Canonsburg, PA
.
31.
San Andrés
,
L.
,
Wu
,
T.
,
Barajas-Rivera
,
J.
,
Zhang
,
J.
, and
Kawashita
,
R.
,
2019
, “
Leakage and Cavity Pressures in an Interlocking Labyrinth Gas Seal: Measurements Versus Predictions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101007
.10.1115/1.4044284
32.
Betta
,
G.
,
Liguori
,
C.
, and
Pietrosanto
,
A.
,
2000
, “
Propagation of Uncertainty in a Discrete Fourier Transform Algorithm
,”
Measurement
,
27
(
4
), pp.
231
239
.10.1016/S0263-2241(99)00068-8
33.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
You do not currently have access to this content.