Abstract

To quantify the erosion parameters and thus assess the erodibility of soils, hole erosion tests (HET) are used with methods of interpretation developed recently by researchers. The application of these methods requires some input data, and the most critical one is the final diameter of the eroded hole that is determined after completion of the test. The precision of the hole diameter after erosion leads to a better and more reliable evaluation of the soil’s resistance against erosion, more precisely the soil erodibility characteristics, τc (critical shear stress) and ker (erosion coefficient). In the present study, three methods for determining the final hole diameter are used: M1, direct weighing of the paraffin skeleton of the eroded hole; M2, differential mass of the sample before and after erosion; and M3, 3-D scanning technique of the paraffin skeleton. These methods were applied on five HET tests performed on soil samples containing the same percentage of Armorican kaolinite mixed with Hostun sand. The soil samples are compacted at different densities and to the optimum water content, as determined from a standard Proctor test. The results indicate that method M3 based on a 3-D scanner acquisition and processing of the skeleton volume after erosion compares very well with the more usual ones, M1 and M2, with the obvious advantage of providing the full 3-D reconstruction of the post-erosion hole, allowing further investigations (morphological analyses). Furthermore, an assessment of the uncertainty in predicting erodibility, particularly associated with the post-erosion diameter calculated through the three methods, was conducted and yielded satisfactory outcomes.

References

1.
Benahmed
,
N.
and
Bonelli
S.
.
2012
. “
Investigating Concentrated Leak Erosion Behaviour of Cohesive Soils by Performing Hole Erosion Tests
.”
European Journal of Environmental and Civil Engineering
16
, no. 
1
:
43
58
. https://doi.org/10.1080/19648189.2012.667667
2.
Bernatek-Jakiel
,
A.
and
Poesen
J.
.
2018
. “
Subsurface Erosion by Soil Piping: Significance and Research Needs
.”
Earth-Science Reviews
185
:
1107
1128
. https://doi.org/10.1016/j.earscirev.2018.08.006
3.
Bonelli
,
S.
, ed.
2012
.
Erosion of Geomaterials.
London
:
ISTE LTD
. https://doi.org/10.1002/9781118561737
4.
Bonelli
,
S.
and
Brivois
O.
.
2008
. “
The Scaling Law in the Hole Erosion Test with a Constant Pressure Drop
.”
International Journal for Numerical and Analytical Methods in Geomechanics
32
, no. 
13
(September):
1573
1595
. https://doi.org/10.1002/nag.683
5.
Bonelli
,
S.
,
Brivois
O.
,
Borghi
R.
, and
Benahmed
N.
.
2006
. “
On the Modelling of Piping Erosion
.”
Comptes Rendus. Mécanique
334
, nos. 
8–9
(August–September):
555
559
. https://doi.org/10.1016/j.crme.2006.07.003
6.
Bonelli
,
S.
,
Fell
R.
, and
Benahmed
N.
.
2013
. “
Concentrated Leak Erosion
.” In
Erosion in Geomechanics Applied to Dams and Levees, 271–341
.
Hoboken, NJ
:
Wiley
. https://doi.org/10.1002/9781118577165.ch4
7.
Chevalier
,
C.
,
Haghighi
I.
,
Pham
T. L.
, and
Reiffsteck
P.
.
2010
. “
Two Complementary Tests for Characterizing the Soil Erosion
.” In
Proceedings of the Fifth International Conference on Scour and Erosion, ICSE 2010
,
152
161
. Reston, VA:
American Society of Civil Engineers
. https://doi.org/10.1061/41147(392)14
8.
Correia dos Santos
,
R. N.
,
Caldeira
L.
, and
Maranha Das Neves
E.
.
2017
. “
Experimental Study on Limitation of Internal Erosion in Dams by Upstream Zones of Well-Graded Soils
.”
Géotechnique
67
, no. 
6
(June):
491
502
. https://doi.org/10.1680/jgeot.15.P.174
9.
Fattahi
,
S. M.
,
Soroush
A.
, and
Shourijeh
P. T.
.
2017
. “
The Hole Erosion Test: A Comparison of Interpretation Methods
.”
Geotechnical Testing Journal
40
, no. 
3
(May):
494
505
. https://doi.org/10.1520/GTJ20160069
10.
Fell
,
R.
and
Fry
J.-J.
, eds.
2007
.
Internal Erosion of Dams and Their Foundations
, 1st ed.
London
:
CRC Press
. https://doi.org/10.1201/9781482266146
11.
Fell
,
R.
,
Wan
C. F.
,
Cyganiewicz
J.
, and
Foster
M.
.
2003
. “
Time for Development of Internal Erosion and Piping in Embankment Dams
.”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
4
(April):
307
314
. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
12.
Foster
,
M.
,
Fell
R.
, and
Spannagle
M.
.
2000
. “
The Statistics of Embankment Dam Failures and Accidents
.”
Canadian Geotechnical Journal
37
, no. 
5
(October):
1000
1024
. https://doi.org/10.1139/t00-030
13.
Golay
,
F.
,
Lachouette
D.
,
Bonelli
S.
, and
Seppecher
P.
.
2011
. “
Numerical Modelling of Interfacial Soil Erosion with Viscous Incompressible Flows
.”
Computer Methods in Applied Mechanics and Engineering
200
, nos. 
1–4
(January):
383
391
. https://doi.org/10.1016/j.cma.2010.09.002
14.
Haghighi
,
I.
,
Chevalier
C.
,
Duc
M.
,
Guédon
S.
, and
Reiffsteck
P.
.
2013
. “
Improvement of Hole Erosion Test and Results on Reference Soils
.”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
2
(February):
330
339
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000747
15.
Indraratna
,
B.
,
Muttuvel
T.
,
Khabbaz
H.
, and
Armstrong
R.
.
2008
. “
Predicting the Erosion Rate of Chemically Treated Soil Using a Process Simulation Apparatus for Internal Crack Erosion
.”
Journal of Geotechnical and Geoenvironmental Engineering
134
, no. 
6
(June):
837
844
. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(837)
16.
Khanal
,
A.
,
Klavon
K. R.
,
Fox
G. A.
, and
Daly
E. R.
.
2016
. “
Comparison of Linear and Nonlinear Models for Cohesive Sediment Detachment: Rill Erosion, Hole Erosion Test, and Streambank Erosion Studies
.”
Journal of Hydraulic Engineering
142
, no. 
9
(September): 04016026. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001147
17.
Lachouette
,
D.
,
Golay
F.
, and
Bonelli
S.
.
2008
. “
One-Dimensional Modeling of Piping Flow Erosion
.”
Comptes Rendus. Mécanique
336
, no. 
9
(September):
731
736
. https://doi.org/10.1016/j.crme.2008.06.007
18.
Lüthi
,
M.
,
Fannin
R. J.
, and
Millar
R. G.
.
2012
. “
A Modified Hole Erosion Test (HET-P) Device
.”
Geotechnical Testing Journal
35
, no. 
4
(July):
660
664
. https://doi.org/10.1520/GTJ104336
19.
Ma
,
Y.
,
Xiao
M.
, and
Kermani
B.
.
2020
. “
Experimental Investigation of the Effects of Fluid’s Physicochemical Characteristics on Piping Erosion of a Sandy Soil under Turbulent Flow
.”
Geotechnical Testing Journal
43
, no. 
2
(March):
436
451
. https://doi.org/10.1520/GTJ20180396
20.
Marot
,
D.
,
Regazzoni
P.-L.
, and
Wahl
T.
.
2011
. “
Energy-Based Method for Providing Soil Surface Erodibility Rankings
.”
Journal of Geotechnical and Geoenvironmental Engineering
137
, no. 
12
(December):
1290
1293
. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000538
21.
Pachideh
,
V.
and
Mir Mohammad Hosseini
S. M.
.
2019
. “
A New Physical Model for Studying Flow Direction and Other Influencing Parameters on the Internal Erosion of Soils
.”
Geotechnical Testing Journal
42
, no. 
6
(November):
1431
1456
. https://doi.org/10.1520/GTJ20170301
22.
Reddi
,
L. N.
,
Lee
I.-M.
, and
Bonala
M. V. S.
.
2000
. “
Comparison of Internal and Surface Erosion Using Flow Pump Tests on a Sand-Kaolinite Mixture
.”
Geotechnical Testing Journal
23
, no. 
1
(March):
116
122
. https://doi.org/10.1520/GTJ11129J
23.
Regazzoni
,
P.-L.
and
Marot
D.
.
2013
. “
A Comparative Analysis of Interface Erosion Tests
.”
Natural Hazards
67
, no. 
2
(June):
937
950
. https://doi.org/10.1007/s11069-013-0620-3
24.
Reiffsteck
,
P.
,
Pham
T. L.
,
Vargas
R.
, and
Paihua
S.
. n.d “
Comparative Study of Superficial and Internal Erosion Tests
.” Paper presented at the
Third International Conference on Scour and Erosion (ICSE-3)
,
Amsterdam, the Netherlands
, November 1–3, 2006.
25.
Říha
,
J.
and
Jandora
J.
.
2015
. “
Pressure Conditions in the Hole Erosion Test
.”
Canadian Geotechnical Journal
52
, no. 
1
(January):
114
119
. https://doi.org/10.1139/cgj-2013-0474
26.
Sato
,
M.
and
Kuwano
R.
.
2015
. “
Suffusion and Clogging by One-Dimensional Seepage Tests on Cohesive Soil
.”
Soils and Foundations
55
, no. 
6
(December):
1427
1440
. https://doi.org/10.1016/j.sandf.2015.10.008
27.
Shourijeh
,
P. T.
,
Soroush
A.
, and
Daneshi-Sadr
A.-H.
.
2020
. “
The Effects of Lime, Bentonite and Nano-clay on Erosion Characteristics of Clay Soils
.”
European Journal of Environmental and Civil Engineering
26
, no. 
9
:
3762
3787
. https://doi.org/10.1080/19648189.2020.1818629
28.
Soroush
,
A.
,
Shourijeh
P. T.
, and
Ramezani Fouladi
S.
.
2019
. “
The Effects of Soil Erosion Characteristics on Critical Filter Design in Embankment Dams
.”
Geotechnical Testing Journal
42
, no. 
3
(May):
789
816
. https://doi.org/10.1520/GTJ20170323
29.
Thomas
,
B. C.
,
Shivashankar
R.
,
Jacob
S.
, and
Varghese
M. S.
.
2020
. “
Erosion Studies on Lithomargic Clays
.”
Indian Geotechnical Journal
50
, no. 
1
(February):
142
156
. https://doi.org/10.1007/s40098-019-00364-8
30.
Wan
,
C. F.
and
Fell
R.
.
2004
. “
Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams
.”
Geotechnical Testing Journal
27
, no. 
3
(May):
295
303
. https://doi.org/10.1520/GTJ11903
31.
Wang
,
C.
,
Yu
X.
, and
Liang
F.
.
2017
. “
A Review of Bridge Scour: Mechanism, Estimation, Monitoring and Countermeasures
.”
Natural Hazards
87
, no. 
3
(July):
1881
1906
. https://doi.org/10.1007/s11069-017-2842-2
32.
Xie
,
L.
,
Liang
X.
, and
Su
T.-C.
.
2018
. “
Measurement of Pressure in Viewable Hole Erosion Test
.”
Canadian Geotechnical Journal
55
, no. 
10
(October):
1502
1509
. https://doi.org/10.1139/cgj-2017-0292
This content is only available via PDF.
You do not currently have access to this content.