An experimental radiation chamber has been developed to nondestructively measure the thermal diffusivity of a combustion chamber deposit (CCD) layer. The accumulation of CCD shifts the operability range of homogeneous charge compression ignition (HCCI) to lower loads where the fuel economy benefit of HCCI over a traditional spark ignition strategy is at a maximum. The formation and burn-off of CCD introduce operational variability, which increases the control system burden of a practical HCCI engine. To fully characterize the impact of CCD on HCCI combustion and develop strategies which limit the CCD imposed variability, the thermal and physical properties of HCCI CCD must be determined without destroying the morphology of the CCD layer. The radiation chamber device provides a controlled, inert atmosphere absent of cyclical pressure oscillations and fuel/air interactions found within an engine. The device exposes temperature probes coated with CCD to controlled heat flux pulses generated by a graphite emitter and a rotating disk. CCD layer thermal diffusivity is then calculated based on the phase delay of the sub-CCD temperature response relative to the response of the temperature probe when clean. This work validates the accuracy of the radiation chamber's diffusivity determination methodology by testing materials of known properties. Wafers of three different materials, whose thermal diffusivities span two orders of magnitude centered on predicted CCD diffusivity values, are installed over the temperature probes to act as CCD surrogates. Multiple thicknesses of each material are tested over a range of heat flux pulse durations. Diffusivity values determined from radiation chamber testing are independent of sample thickness with each of the three calibration materials. The radiation chamber diffusivity values exhibit a slight, but consistent underprediction for all wafers due to residual contact resistance at the wafer–probe interface. Overall, the validation studies establish the radiation chamber as an effective device for the nondestructive thermal diffusivity determination of thin insulative coatings. The similarity of expected CCD diffusivity values to those of the validation specimens instills confidence that the methodology and device presented herein can be successfully utilized in the characterization of HCCI CCD layers.

References

1.
Güralp
,
O. A.
,
Hoffman
,
M. A.
,
Assanis
,
D.
, and
Filipi
,
Z.
,
2006
, “
Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine
,” Society of Automotive Engineers, Technical Paper No. 2006-01-3277.
2.
Güralp
,
O.
,
Hoffman
,
M.
,
Assanis
,
D.
,
Filipi
,
Z.
,
Kuo
,
T.-W.
,
Najt
,
P.
, and
Rask
,
R.
,
2009
, “
Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements
,” Society of Automotive Engineers, Technical Paper No. 2009-01-0668.
3.
Cheng
,
S.
,
1994
, “
A Physical Mechanism for Deposit Formation in a Combustion Chamber
,” SAE Paper No. 941892.
4.
Hopwood
,
A. B.
,
Chynoweth
,
S.
, and
Kalghatgi
,
G. T.
,
1998
, “
A Technique to Measure Thermal Diffusivity and Thickness of Combustion Chamber Deposits In-Situ
,” Society of Automotive Engineers, Technical Paper No. 982590.
5.
LaVigne
,
P. A.
,
Anderson
,
C. L.
, and
Prakash
,
C.
,
1986
, “
Unsteady Heat Transfer and Fluid Flow in Porous Combustion Chamber Deposits
,” Society of Automotive Engineers, Technical Paper No. 860241.
6.
Tree
,
D. R.
,
Wiczynski
,
P. D.
, and
Yonushonis
,
T. M.
,
1996
, “
Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion
,” Society of Automotive Engineers, Technical Paper No. 960036.
7.
Tree
,
D. R.
,
Oren
,
D. C.
,
Yonushonis
,
T. M.
, and
Wiczynski
,
P. D.
,
1996
, “
Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer
,” Society of Automotive Engineers, Technical Paper No. 960317.
8.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butler
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity
,”
J. Appl. Phys.
,
32
(
9
), pp.
1679
1684
.10.1063/1.1728417
9.
Taylor
,
R.
,
1980
, “
Construction of Apparatus for Heat Pulse Thermal Diffusivity Measurements From 300–3000 K
,”
J. Phys. E: Sci. Instrum.
,
13
, pp.
1193
1199
.10.1088/0022-3735/13/11/014
10.
Cezairliyan
,
A.
,
Baba
,
T.
, and
Taylor
,
R.
,
1994
, “
A High-Temperature Laser-Pulse Thermal Diffusivity Apparatus
,”
Int. J. Thermophys.
,
15
(
2
), pp.
317
341
.
11.
Kim
,
S. W.
, and
Taylor
,
R. E.
,
1993
, “
Estimation of Thermophysical Properties of a Film Coated on a Substrate Using Pulsed Transient Analysis
,”
Int. J. Thermophys.
,
14
(
1
), pp.
135
147
.
12.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
13.
Rosencwaig
,
A.
, and
Gersho
,
A.
,
1976
, “
Theory of the Photoacoustic Effect With Solids
,”
J. Appl. Phys.
,
47
(
1
), pp.
64
69
.10.1063/1.322296
14.
Güralp
,
O. A.
,
2008
, “
The Effect of Combustion Chamber Deposits on Heat Transfer and Combustion in a Homogeneous Charge Compression Ignition Engine
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
15.
Chang
,
J.
,
Filipi
,
Z.
,
Assanis
,
D.
,
Kuo
,
T.-W.
,
Najt
,
P.
, and
Rask
,
R.
,
2005
, “
Characterizing the Thermal Sensitivity of a Gasoline Homogeneous Charge Compression Ignition Engine With Measurements of Instantaneous Wall Temperature and Heat Flux
,”
Int. J. Eng. Res.
,
6
, pp.
289
310
.10.1243/146808705X30558
16.
Chang
,
J.
,
2004
, “
Thermal Characterization and Heat Transfer Study of a Gasoline Homogeneous Charge Compression Ignition Engine Via Measurements of Instantaneous Wall Temperature and Heat Flux in the Combustion Chamber
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
17.
Chang
,
J.
,
Güralp
,
O.
,
Filipi
,
Z.
,
Assanis
,
D.
,
Kuo
,
T.
,
Najt
,
P.
, and
Rask
,
R.
,
2004
, “
New Heat Transfer Correlation for an HCCI Engine Derived From Measurements of Instantaneous Surface Heat Flux
,” Society of Automotive Engineers, Technical Paper No. 2004-01-2996.
18.
Giberson
,
R. C.
, and
Walker
,
J. P.
,
1966
, “
Reaction of Nuclear Graphite With Water Vapor—Part 1: Effect of Hydrogen and Water Vapor Partial Pressures
,”
Carbon
,
3
(
4
), pp.
521
525
.10.1016/0008-6223(66)90037-6
19.
Walker
,
P. L.
,
Rusinko
,
F.
, and
Austin
,
L. G.
,
1959
, “
Gas Reactions of Carbon
Adv. Catal.
,
11
, pp.
133
221
.10.1016/S0360-0564(08)60418-6
20.
Goldstein
,
H.
,
1964
, “
The Reaction of Active Nitrogen With Graphite
,”
J. Phys. Chem.
,
68
, pp.
39
42
.10.1021/j100783a007
21.
McCaroll
,
B.
, and
McKee
,
D. W.
,
1971
, “
The Reactivity of Graphite Surfaces With Atoms and Molecules of Hydrogen, Oxygen and Nitrogen
,”
Carbon
,
9
(
3
), pp.
301
304
.10.1016/0008-6223(71)90049-2
22.
Jackson
,
N. S.
,
Pilley
,
A. D.
, and
Owen
,
O. J.
,
1990
, “
Instantaneous Heat Transfer in a Highly Rated DI Truck Engine
,” Society of Automotive Engineers, Technical Paper No. 900692.
23.
Gatowski
,
J.
,
Smith
,
M.
, and
Alkidas
,
A.
,
1989
, “
An Experimental Investigation of Surface Thermometry and Heat Flux
,”
Exp. Therm. Fluid Sci.
,
2
, pp.
280
292
.10.1016/0894-1777(89)90017-4
24.
Solidworks Education Edition
,
2010
,
SP5.0
,
COSMOS Material Properties Library
,
Dassault Systemes, Waltham, MA
.
25.
Holman
,
J. P.
,
2002
,
Heat Transfer
, 9th ed.,
McGraw-Hill
,
New York
.
26.
ASM International
,
1990
,
Metals Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
, 10th ed.,
ASM International
,
Materials Park, OH
.
27.
Nishiwaki
,
K.
, and
Hafnan
,
M.
,
2000
, “
The Determination of Thermal Properties of Engine Combustion Chamber Deposits
,” Society of Automotive Engineers, Technical Paper No. 2000-01-1215.
28.
Fox
,
A. C.
, and
Clyne
,
T. W.
,
2004
, “
Oxygen Transport by Gas Permeation Through the Zirconia Layer in Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
184
, pp.
311
321
.10.1016/j.surfcoat.2003.10.018
29.
Woodside
,
W.
, and
Messmer
,
J. H.
1961
, “
Thermal Conductivity of Porous Media II. Consolidated Rocks
,”
J. Appl. Phys.
,
32
(9), pp.
1696
1706
.10.1063/1.1728420
30.
Shafiro
,
B.
, and
Kachanov
,
M.
,
2000
, “
Anisotropic Effective Conductivity of Materials With Nonrandomly Oriented Inclusions of Diverse Ellipsoidal Shapes
,”
J. Appl. Phys.
,
87
(
12
), pp.
8561
8569
.10.1063/1.373579
31.
Clyne
,
T. W.
,
Golosnoy
, I
. O.
,
Tan
,
J. C.
, and
Markaki
,
A. E.
,
2006
, “
Porous Materials for Thermal Management Under Extreme Conditions
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
125
146
.10.1098/rsta.2005.1682
32.
Mendera
,
K.
,
2000
, “
Effectiveness of Plasma Sprayed Coatings for Engine Combustion Chamber
,” Society of Automotive Engineers, Technical Paper No. 2000-01-2982.
33.
Merzlikin
,
V.
,
Timonin
,
V.
,
Gutierrez Ojeda
,
M.
, and
Sidorov
,
O.
,
2007
, “
New Selectively Absorbing and Scattering Heat-Insulating Coatings of the Combustion Chamber for Low-Heat-Rejection Diesel
,” Society of Automotive Engineers, Technical Paper No. 2007-01-1755.
34.
Gutierrez Ojeda
,
M.
,
Merzlikin
,
V.
,
Sidorov
,
O.
, and
Kalenkov
,
S.
,
2007
, “
Regulation of the Combustion Chamber Walls Temperature With Semitransparent Heat Insulating Coatings
,” Society of Automotive Engineers, Technical Paper No. 2007-24-0031.
35.
Golosnoy
, I
. O.
,
Cipitria
,
A.
, and
Clyne
,
T. W.
,
2009
, “
Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work
,”
J. Therm. Spray Technol.
,
18
(
5–6
), pp.
809
821
.10.1007/s11666-009-9337-y
36.
Akopov
,
F. A.
,
Val'yano
,
G. E.
,
Vorob'ev
,
A. Y.
,
Mineev
, V
. N.
,
Petrov
, V
. A.
,
Chernyshev
,
A. P.
, and
Chernyshev
,
G. P.
,
2001
, “
Thermal Radiative Properties of Ceramic of Cubic ZrO2 Stabilized With Y2O3 at High Temperatures
,”
High Temperature
,
39
(
2
), pp.
244
254
.10.1023/A:1017574816705
37.
Zhao
,
L.
,
2012
, “
An Investigation of Mist/Air Film Cooling With Application to Gas Turbine Airfoils
,” Ph.D. thesis, University of New Orleans, New Orleans, LA, Paper No. 1499.
38.
Wang
,
T.
, and
Simon
,
T. W.
,
1989
, “
Development of a Special-Purpose Test Surface Guided by Uncertainty Analysis: Introduction of a New Uncertainty Analysis Step
,”
AIAA J. Thermophys. Heat Transfer
,
3
(
1
), pp.
19
26
.10.2514/3.120
You do not currently have access to this content.