Graphical Abstract Figure

Annulus-Side Flow Boiling and Visualization of a Three-Dimensionally Enhanced Tube

Graphical Abstract Figure

Annulus-Side Flow Boiling and Visualization of a Three-Dimensionally Enhanced Tube

Close modal

Abstract

Both the flow boiling heat transfer and the associated flow patterns for R410A flowing within the annulus formed by an inside enhanced heat transfer (EHT) tube (arrays of large circular dimples and background arrays of small petals) and a smooth outside tube were investigated. An annulus where both surfaces were smooth was investigated to serve as the baseline. The effects that mass flux and quality had on heat transfer and flow pattern were investigated from 100 kg/(m2s) to 204 kg/(m2s), and from 0.2 to 0.8, respectively. The findings indicate that the EHT tube annulus exhibits a 35%–49% higher heat transfer coefficient (HTC) and 5%–10% higher frictional pressure drop compared to the smooth tube annulus. At low mass flux, the effect of quality on HTC is relatively small. However, at high mass flux, the impact of quality on HTC increases initially and then decreases as the quality increases. Furthermore, the HTC decreases as the quality increases when the refrigerant flow pattern transitions to annular flow. Flow pattern observations showed that the dimple structure encouraged slug flow as compared to the smooth surface, which favored annular flow for similar flow conditions. The heat transfer enhancement mechanism of the EHT tube is due to: (1) increased heat transfer surface area; (2) enhanced turbulence in the vapor core; and (3) increasing surface wetting, which reduces the dry zone area. The Gungor and Winterton correlation was modified and fitted to the heat transfer measurements to produce a new correlation for the EHT tube.

References

1.
Jige
,
D.
, and
Inoue
,
N.
,
2019
, “
Flow Boiling Heat Transfer and Pressure Drop of R32 Inside 2.1 mm, 2.6 mm and 3.1 mm Microfin Tubes
,”
Int. J. Heat Mass Transfer
,
134
, pp.
566
573
.10.1016/j.ijheatmasstransfer.2019.01.027
2.
Liebenberg
,
L.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2005
, “
Flow Visualization and Flow Pattern Identification With Power Spectral Density Distributions of Pressure Traces During Refrigerant Condensation in Smooth and Microfin Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
3
), pp.
209
220
.10.1115/1.1857942
3.
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2008
, “
Refrigerant Condensation Flow Regimes in Enhanced Tubes and Their Effect on Heat Transfer Coefficients and Pressure Drops
,”
Heat Transfer Eng.
,
29
(
6
), pp.
506
520
.10.1080/01457630801891532
4.
Yun
,
R.
,
Heo
,
J.
, and
Kim
,
Y.
,
2009
, “
Film Condensation Heat Transfer Characteristics of R134a on Horizontal Stainless Steel Integral-Fin Tubes at Low Heat Transfer Rate
,”
Int. J. Refrig.
,
32
(
5
), pp.
865
873
.10.1016/j.ijrefrig.2008.12.001
5.
Kim
,
N. H.
,
Byun
,
H. W.
, and
Lee
,
J. K.
,
2013
, “
Condensation Heat Transfer and Pressure Drop of R-410A in Three 7.0 mm Outer Diameter Microfin Tubes Having Different Inside Geometries
,”
J. Enhanced Heat Transfer
,
20
(
3
), pp.
235
250
.10.1615/JEnhHeatTransf.2013007609
6.
He
,
Y.
,
Wu
,
J. J.
,
Li
,
W.
,
Dou
,
B. L.
,
Zheng
,
B. R.
,
Zhang
,
J. H.
, and
Tang
,
W. Y.
,
2023
, “
Condensation Heat Transfer on the Outer Surface of a Horizontal Annulus Having Surface Enhancement
,”
Int. J. Heat Mass Transfer
,
201
, p.
123588
.10.1016/j.ijheatmasstransfer.2022.123588
7.
Wu
,
J. J.
,
He
,
Y.
,
Li
,
W.
,
Dong
,
Z. G.
,
Kedzierski
,
M. A.
,
Cao
,
Y. L.
, and
Ke
,
H. B.
,
2023
, “
Flow Boiling in Inner Annulus of Horizontal Enhanced Tubes
,”
Int. J. Multiphase Flow
,
160
, p.
104367
.10.1016/j.ijmultiphaseflow.2022.104367
8.
Rollmann
,
P.
, and
Spindler
,
K.
,
2015
, “
A New Flow Pattern Map for Flow Boiling in Microfin Tubes
,”
Int. J. Multiphase Flow
,
72
, pp.
181
187
.10.1016/j.ijmultiphaseflow.2015.01.003
9.
Yu
,
M. H.
,
Lin
,
T. K.
, and
Tseng
,
C. C.
,
2002
, “
Heat Transfer and Flow Pattern During Two-Phase Flow Boiling of R-134a in Horizontal Smooth and Microfin Tubes
,”
Int. J. Refrig.
,
25
(
6
), pp.
789
798
.10.1016/S0140-7007(01)00075-5
10.
Spindler
,
K.
, and
Müller-Steinhagen
,
H.
,
2009
, “
Flow Boiling Heat Transfer of R134a and R404A in a Microfin Tube at Low Mass Fluxes and Low Heat Fluxes
,”
Heat Mass Transfer
,
45
(
7
), pp.
967
977
.10.1007/s00231-007-0326-8
11.
Mashouf
,
H.
,
Shafaee
,
M.
,
Sarmadian
,
A.
, and
Mohseni
,
S. G.
,
2017
, “
Visual Study of Flow Patterns During Evaporation and Condensation of R-600a Inside Horizontal Smooth and Helically Dimpled Tubes
,”
Appl. Therm. Eng
,
124
, pp.
1392
1400
.10.1016/j.applthermaleng.2017.06.125
12.
Liu
,
J.
,
Liu
,
J.
, and
Xu
,
X.
,
2020
, “
Diabatic Visualization Study of R245fa Two Phase Flow Pattern Characteristics in Horizontal Smooth and Microfin Tube
,”
Int. J. Heat Mass Transfer
,
152
, pp.
119513
–1195
14
.10.1016/j.ijheatmasstransfer.2020.119513
13.
Colombo
,
L. P. M.
,
Lucchini
,
A.
, and
Muzzio
,
A.
,
2012
, “
Flow Patterns, Heat Transfer and Pressure Drop for Evaporation and Condensation of R134a in Microfin Tubes
,”
Int. J. Refrig.
,
35
(
8
), pp.
2150
2165
.10.1016/j.ijrefrig.2012.08.019
14.
Yang
,
C. M.
, and
Hrnjak
,
P.
,
2020
, “
A New Flow Pattern Map for Flow Boiling of R410A in Horizontal Micro-Fin Tubes Considering the Effect of the Helix Angle
,”
Int. J. Refrig.
,
109
, pp.
154
160
.10.1016/j.ijrefrig.2019.09.013
15.
Kukulka
,
D. J.
,
Smith
,
R.
, and
Fuller
,
K. G.
,
2011
, “
Development and Evaluation of Enhanced Heat Transfer Tubes
,”
Appl. Therm. Eng.
,
31
(
13
), pp.
2141
2145
.10.1016/j.applthermaleng.2011.01.024
16.
Kukulka
,
D. J.
,
He
,
Y.
,
Smith
,
R.
, and
Li
,
W.
,
2017
, “
Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes
,”
Chem. Eng. Trans.
,
61
, pp.
1777
1782
.10.3303/CET1761294
17.
Kukulka
,
D. J.
,
Smith
,
R.
,
Li
,
W.
,
Zhang
,
A. F.
, and
He
,
Y.
,
2018
, “
Condensation and Evaporation Characteristics of Flows Inside Vipertex 1EHT and 4EHT Small Diameter Enhanced Heat Transfer Tubes
,”
Chem. Eng. Trans.
,
70
, pp.
13
18
.10.3303/CET1870003
18.
Li
,
W.
,
2022
, “
Two-Phase Heat Transfer Correlations in Three-Dimensional Hierarchical Tube
,”
Int. J. Heat Mass Transfer
,
191
, p.
122827
.10.1016/j.ijheatmasstransfer.2022.122827
19.
Ma
,
X.
,
Li
,
W.
,
Zhang
,
C. C.
,
Sun
,
Z. C.
,
Kukulka
,
D. J.
,
He
,
Y.
,
Kim
,
N. H.
, and
Zhang
,
Z. X.
,
2020
, “
Condensation and Evaporation Heat Transfer Characteristics of Low Mass Fluxes in Horizontal Smooth Tube and Three-Dimensional Enhanced Tubes
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021016
.10.1115/1.4044172
20.
Dong
,
Z.
,
Zhang
,
J.
,
Li
,
Z.
,
Wang
,
J.
,
Liu
,
S.
, and
He
,
Y.
,
2022
, “
Forced Convection Heat Transfer Outside Enhanced Tubes With Different Surface Structures
,”
Heat Transf. Eng.
,
43
(
14
), pp.
1222
1240
.10.1080/01457632.2021.1953745
21.
Sun
,
Z. C.
,
Li
,
W.
,
Ma
,
X.
,
Ayub
,
Z.
, and
He
,
Y.
,
2019
, “
Flow Boiling in Horizontal Annuli Outside Horizontal Smooth, Herringbone and Three-Dimensional Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
143
, p.
118554
.10.1016/j.ijheatmasstransfer.2019.118554
22.
Li
,
W.
,
Wang
,
J. C.
,
Guo
,
Y.
,
Gu
,
Z. B.
,
Wang
,
X. B.
,
Sun
,
Z. C.
,
Tang
,
W. Y.
, and
Kukulka
,
D. J.
,
2021
, “
Two-Phase Heat Transfer of R410A in Annuli Outside Enhanced Tubes With Micro-Fin and Dimple
,”
Int. J. Heat Mass Transfer
,
175
, pp.
121
370
.10.1016/j.ijheatmasstransfer.2021.121370
23.
Li
,
W.
,
Chen
,
H.
,
Wang
,
J. C.
,
Gao
,
Y.
,
Wang
,
X. B.
,
He
,
Y.
,
Tang
,
W. Y.
, and
Kukulka
,
D. J.
,
2022
, “
Condensation Heat Transfer in Annuli Outside Horizontal Stainless Steel Enhanced Tubes
,”
Int. J. Therm. Sci.
,
177
, p.
107479
.10.1016/j.ijthermalsci.2022.107479
24.
Ma
,
L. X.
,
Liu
,
X. Z.
,
Gao
,
Y.
,
Li
,
W.
,
Wu
,
Z.
,
Luo
,
X.
,
Tao
,
Z.
, and
Kabelac
,
S.
,
2023
, “
R410A and R32 Condensation Heat Transfer and Flow Patterns Inside Horizontal Micro-Fin and 3-D Enhanced Tubes
,”
Int. Commun. Heat Mass Transfer
,
142
, p.
106638
.10.1016/j.icheatmasstransfer.2023.106638
25.
Li
,
W.
,
Ma
,
X.
,
Sun
,
Z. C.
,
He
,
Y.
,
Sherif
,
S. A.
,
Zhang
,
J. H.
, and
Zhu
,
H. T.
,
2019
, “
Evaporation Heat Transfer Characteristics of R410A Inside Horizontal Three-Dimensional Enhanced Tubes
,”
Int. J. Therm. Sci.
,
137
, pp.
456
466
.10.1016/j.ijthermalsci.2018.12.003
26.
Sun
,
Z. C.
,
Li
,
W.
,
Ma
,
X.
,
Ma
,
L. X.
, and
Yan
,
H.
,
2019
, “
Two-Phase Heat Transfer in Horizontal Dimpled/Protruded Surface Tubes With Petal-Shaped Background Patterns
,”
Int. J. Heat Mass Transfer
,
140
(
1
), pp.
837
851
.10.1016/j.ijheatmasstransfer.2019.06.046
27.
Li
,
W.
,
Wang
,
J.
,
Guo
,
Y.
,
Shi
,
Q.
,
He
,
Y.
,
Kukulka
,
D. J.
,
Luo
,
X.
, and
Kabelac
,
S.
,
2022
, “
R410A Flow Condensation Inside Two Dimensional Micro-Fin Tubes and Three Dimensional Dimple Tubes
,”
Int. J. Heat Mass Transfer
,
182
, p.
121910
.10.1016/j.ijheatmasstransfer.2021.121910
28.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
8
16
https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract.
29.
Wilson
,
E. E.
,
1915
, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
37
(
1
), pp.
47
70
.10.1115/1.4059736
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
32.
Petukhov
,
B. S.
, and
Kirilov
,
V. V.
,
1958
, “
The Problem of Heat Exchange in the Turbulent Flow of Liquids in Tubes
,”
Teploenergetika
,
4
(
4
), pp.
63
68
.
33.
Gungor
,
K. E.
, and
Winterton
,
R.
,
1987
, “
Simplified General Correlation for Saturated Boiling and Comparisons of Correlation With Data
,”
Chem. Eng. Res. Des.
,
65
, pp.
148
156
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8366451.
You do not currently have access to this content.