Abstract

By effectively controlling heat under harsh circumstances, microchannel heat sinks (MCHSs) increase the robustness of electronics. Device lifespans are increased by this dependability, which makes them perfect for demanding applications like automotive and aerospace. In this study, thermal and hydraulic performance of additively manufactured novel wavy fractal heat sink (WFHS) device are investigated and compared with straight fractal heat sink (FHS). It includes numerical simulations with experimental validations for both devices. With water as the cooling fluid, only single-phase flow is taken into account. The thermal performance of WFHS is found better than FHS device but with high pressure drop (ΔP) penalty. Based on results and conclusions, parametric optimization is carried out to find the optimized geometry of WFHS for best overall performance. It reveals that WFHS case-4 having amplitude (A) of 0.1 mm at v˙ = 300 ml/min is the best case for maximum overall performance. Decreasing A of WFHS, ΔP penalty, and maximum thermal resistance (Rth,max) decreases. For lower pumping power (PP<3 mW), FHS, and WFHS case-4 show almost equal Rth,max. For higher PP (3 mW < PP<5 mW), WFHS case-4 shows lower Rth,max compared to FHS.

References

1.
Serafy
,
C.
,
Srivastava
,
A.
, and
Yeung
,
D.
,
2014
, “
Unlocking the True Potential of 3D CPUs With Micro-Fluidic Cooling
,”
Proceedings of the 2014 International Symposium on Low Power Electronics and Design
, La Jolla, CA, Aug. 11–13, pp.
323
326
.10.1145/2627369.2627666
2.
Jiang
,
M.
, and
Pan
,
Z.
,
2023
, “
Optimization of Microchannel Heat Sink Based on Multi-Objective Particle Swarm Optimization Algorithm for Integrated Circuit Chips Cooling
,”
Numer. Heat Transfer, Part B
,
86
(
4
), pp.
1
19
.10.1080/10407790.2023.2296620
3.
Datta
,
M.
, and
Choi
,
H.-W.
,
2015
, “
Microheat Exchanger for Cooling High Power Laser Diodes
,”
Appl. Therm. Eng.
,
90
, pp.
266
273
.10.1016/j.applthermaleng.2015.07.012
4.
Ramos-Alvarado
,
B.
,
Li
,
P.
,
Liu
,
H.
, and
Hernandez-Guerrero
,
A.
,
2011
, “
CFD Study of Liquid-Cooled Heat Sinks With Microchannel Flow Field Configurations for Electronics, Fuel Cells, and Concentrated Solar Cells
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2494
2507
.10.1016/j.applthermaleng.2011.04.015
5.
Ghorbani
,
M.
,
Rahimi
,
M.
, and
Pahamli
,
Y.
,
2024
, “
Enhancement of Concentrator Photovoltaic System Through Convergent-Divergent Microchannels
,”
Numer. Heat Transfer, Part A
,
85
(
21
), pp.
3602
3626
.10.1080/10407782.2023.2240501
6.
Khan
,
M. G.
, and
Fartaj
,
A.
,
2011
, “
A Review on Microchannel Heat Exchangers and Potential Applications
,”
Int. J. Energy Res.
,
35
(
7
), pp.
553
582
.10.1002/er.1720
7.
Elvira
,
K. S.
,
I Solvas
,
X. C.
,
Wootton
,
R. C. R.
, and
Demello
,
A. J.
,
2013
, “
The Past, Present and Potential for Microfluidic Reactor Technology in Chemical Synthesis
,”
Nat. Chem.
,
5
(
11
), pp.
905
915
.10.1038/nchem.1753
8.
Jain
,
A.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Microdevices for Biological and Biomedical Applications
,”
J. Therm. Biol.
,
36
(
4
), pp.
209
218
.10.1016/j.jtherbio.2011.02.006
9.
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Cetegen
,
E.
,
Ohadi
,
M.
,
Choo
,
K.
,
Dessiatoun
,
S.
, and
Cetegen
,
E.
,
2013
, “
Emerging Applications of Microchannels
,”
Next Generation Microchannel Heat Exchangers
,
Springer
,
New York
, pp.
67
105
.10.1007/978-1-4614-0779-9
10.
Singh
,
S.
,
Malik
,
A.
, and
Singh Mali
,
H.
,
2023
, “
A Critical Review on Single-Phase Thermo-Hydraulic Enhancement in Geometrically Modified Microchannel Devices
,”
Appl. Therm. Eng.
,
235
, p.
121729
.10.1016/j.applthermaleng.2023.121729
11.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
12.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2003
, “
Fluid Flow Through Microscale Fractal-Like Branching Channel Networks
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
1051
1057
.10.1115/1.1625684
13.
Alharbi
,
A. Y.
,
Pence
,
D. V.
, and
Cullion
,
R. N.
,
2004
, “
Thermal Characteristics of Microscale Fractal-Like Branching Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
5
), pp.
744
752
.10.1115/1.1795236
14.
Yan
,
Y.
,
Yan
,
H.
,
Yin
,
S.
,
Zhang
,
L.
, and
Li
,
L.
,
2019
, “
Single/Multi-Objective Optimizations on Hydraulic and Thermal Management in Micro-Channel Heat Sink With Bionic Y-Shaped Fractal Network by Genetic Algorithm Coupled With Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
129
, pp.
468
479
.10.1016/j.ijheatmasstransfer.2018.09.120
15.
He
,
Z.
,
Yan
,
Y.
,
Zhao
,
T.
,
Zhang
,
L.
, and
Zhang
,
Z.
,
2021
, “
Multi-Objective Optimization and Multi-Factors Analysis of the Thermal/Hydraulic Performance of the Bionic Y-Shaped Fractal Heat Sink
,”
Appl. Therm. Eng.
,
195
, p.
117157
.10.1016/j.applthermaleng.2021.117157
16.
Xu
,
S.
,
Wang
,
W.
,
Fang
,
K.
, and
Wong
,
C.-N.
,
2015
, “
Heat Transfer Performance of a Fractal Silicon Microchannel Heat Sink Subjected to Pulsation Flow
,”
Int. J. Heat Mass Transfer
,
81
, pp.
33
40
.10.1016/j.ijheatmasstransfer.2014.10.002
17.
Yan
,
Y.
,
Yan
,
H.
,
Feng
,
S.
, and
Li
,
L.
,
2019
, “
Thermal-Hydraulic Performances and Synergy Effect Between Heat and Flow Distribution in a Truncated Doubled-Layered Heat Sink With Y-Shaped Fractal Network
,”
Int. J. Heat Mass Transfer
,
142
, p.
118337
.10.1016/j.ijheatmasstransfer.2019.06.093
18.
Xu
,
S.
,
Li
,
Y.
,
Hu
,
X.
, and
Yang
,
L.
,
2016
, “
Characteristics of Heat Transfer and Fluid Flow in a Fractal Multilayer Silicon Microchannel
,”
Int. Commun. Heat Mass Transfer
,
71
, pp.
86
95
.10.1016/j.icheatmasstransfer.2015.12.024
19.
Yan
,
Y.
,
He
,
Z.
,
Wu
,
G.
,
Zhang
,
L.
,
Yang
,
Z.
, and
Li
,
L.
,
2020
, “
Influence of Hydrogels Embedding Positions on Automatic Adaptive Cooling of Hot Spot in Fractal Microchannel Heat Sink
,”
Int. J. Therm. Sci.
,
155
, p.
106428
.10.1016/j.ijthermalsci.2020.106428
20.
Lyu
,
Z.
,
Pourfattah
,
F.
,
Arani
,
A. A. A.
,
Asadi
,
A.
, and
Foong
,
L. K.
,
2020
, “
On the Thermal Performance of a Fractal Microchannel Subjected to Water and Kerosene Carbon Nanotube Nanofluid
,”
Sci. Rep.
,
10
(
1
), p.
7243
.10.1038/s41598-020-64142-w
21.
Chen
,
L.
,
Deng
,
D.
,
Ma
,
Q.
,
Yao
,
Y.
, and
Xu
,
X.
,
2022
, “
Performance Evaluation of High Concentration Photovoltaic Cells Cooled by Microchannels Heat Sink With Serpentine Reentrant Microchannels
,”
Appl. Energy
,
309
, p.
118478
.10.1016/j.apenergy.2021.118478
22.
Sui
,
Y.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2012
, “
Direct Numerical Simulation of Fluid Flow and Heat Transfer in Periodic Wavy Channels With Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
73
88
.10.1016/j.ijheatmasstransfer.2011.08.041
23.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.10.1016/j.ijthermalsci.2011.06.017
24.
Ghorbani
,
N.
,
Targhi
,
M. Z.
,
Heyhat
,
M. M.
, and
Alihosseini
,
Y.
,
2022
, “
Investigation of Wavy Microchannel Ability on Electronic Devices Cooling With the Case Study of Choosing the Most Efficient Microchannel Pattern
,”
Sci. Rep.
,
12
(
1
), p.
5882
.10.1038/s41598-022-09859-6
25.
Intel
,
2025
, “
Intel® Core™ i9 Processors (14th Gen)
,”
Intel
,
Santa Clara, CA
, accessed Apr. 5, 2025, https://www.intel.com/content/www/us/en/products/sku/237504/intel-core-i9-processor-14900ks-36m-cache-up-to-6-20-ghz/specifications.html
26.
Pence
,
D.
, and
Enfield
,
K.
,
2004
, “
Inherent Benefits in Microscale Fractal-Like Devices for Enhanced Transport Phenomena
,”
WIT Trans. Ecol. Environ.
,
73
, pp.
317
327
.10.2495/DN040321
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
3D Systems
,
2025
, “
Laserform AlSi10 Mg
,”
3D Systems
,
Rock Hill, SC
, accessed Apr. 5, 2025, https://www.3dsystems.com/materials/laserform-alsi10 mg
29.
Kou
,
H.-S.
,
Lee
,
J.-J.
, and
Chen
,
C.-W.
,
2008
, “
Optimum Thermal Performance of Microchannel Heat Sink by Adjusting Channel Width and Height
,”
Int. Commun. Heat Mass Transfer
,
35
(
5
), pp.
577
582
.10.1016/j.icheatmasstransfer.2007.12.002
30.
Yan
,
Y.
,
Shen
,
K.
,
Liu
,
Y.
, and
He
,
Z. Q.
,
2021
, “
Thermal-Hydraulic Performance Enhancement of Miniature Heat Sinks Using Connected Y-Shaped Fractal Micro-Channels
,”
Chem. Eng. Process.: Process Intensif.
,
166
, p.
108487
.10.1016/j.cep.2021.108487
31.
Huang
,
P.
,
Dong
,
G.
,
Zhong
,
X.
, and
Pan
,
M.
,
2020
, “
Numerical Investigation of the Fluid Flow and Heat Transfer Characteristics of Tree-Shaped Microchannel Heat Sink With Variable Cross-Section
,”
Chem. Eng. Process.: Process Intensif.
,
147
, p.
107769
.10.1016/j.cep.2019.107769
You do not currently have access to this content.